

PyNaCl: Python binding to the Networking and Cryptography (NaCl) library

Contents

	Public Key Encryption
	Example

	Reference

	Secret Key Encryption
	Example

	Requirements

	Reference

	Algorithm details

	Digital Signatures
	Example

	Reference

	Ed25519

	Hashing
	Integrity check examples

	Additional hashing usages for blake2b

	Message authentication

	Key derivation

	Password hashing
	Scrypt usage

Support Features

	Encoders
	Built in Encoders

	Defining your own Encoder

	Exceptions
	PyNaCl specific exceptions

	PyNaCl exceptions mixing-in standard library ones

	Utilities

Api Documentation

	nacl.hash

	nacl.hashlib

Doing A Release

To run a PyNaCl release follow these steps:

	Update the version number in src/nacl/__init__.py.

	Update README.rst changelog section with the date of the release.

	Send a pull request with these items and wait for it to be merged.

	Run invoke release {version}

Once the release script completes you can verify that the sdist and wheels are
present on PyPI and then send a new PR to bump the version to the next major
version (e.g. 1.2.0.dev1).

Indices and tables

	Index

	Module Index

	Search Page

Public Key Encryption

Imagine Alice wants something valuable shipped to her. Because it’s valuable,
she wants to make sure it arrives securely (i.e. hasn’t been opened or
tampered with) and that it’s not a forgery (i.e. it’s actually from the sender
she’s expecting it to be from and nobody’s pulling the old switcheroo).

One way she can do this is by providing the sender (let’s call him Bob) with a
high-security box of her choosing. She provides Bob with this box, and
something else: a padlock, but a padlock without a key. Alice is keeping that
key all to herself. Bob can put items in the box then put the padlock onto it.
But once the padlock snaps shut, the box cannot be opened by anyone who
doesn’t have Alice’s private key.

Here’s the twist though: Bob also puts a padlock onto the box. This padlock
uses a key Bob has published to the world, such that if you have one of Bob’s
keys, you know a box came from him because Bob’s keys will open Bob’s padlocks
(let’s imagine a world where padlocks cannot be forged even if you know the
key). Bob then sends the box to Alice.

In order for Alice to open the box, she needs two keys: her private key that
opens her own padlock, and Bob’s well-known key. If Bob’s key doesn’t open the
second padlock, then Alice knows that this is not the box she was expecting
from Bob, it’s a forgery.

This bidirectional guarantee around identity is known as mutual authentication.

Example

The Box class uses the given public and private (secret)
keys to derive a shared key, which is used with the nonce given to encrypt the
given messages and to decrypt the given ciphertexts. The same shared key will
be generated from both pairing of keys, so given two keypairs belonging to
Alice (pkalice, skalice) and Bob (pkbob, skbob), the key derived from
(pkalice, skbob) will equal that from (pkbob, skalice).

This is how the system works:

import nacl.utils
from nacl.public import PrivateKey, Box

Generate Bob's private key, which must be kept secret
skbob = PrivateKey.generate()

Bob's public key can be given to anyone wishing to send
Bob an encrypted message
pkbob = skbob.public_key

Alice does the same and then Alice and Bob exchange public keys
skalice = PrivateKey.generate()
pkalice = skalice.public_key

Bob wishes to send Alice an encrypted message so Bob must make a Box with
his private key and Alice's public key
bob_box = Box(skbob, pkalice)

This is our message to send, it must be a bytestring as Box will treat it
as just a binary blob of data.
message = b"Kill all humans"

PyNaCl can automatically generate a random nonce for us, making the encryption
very simple:

Encrypt our message, it will be exactly 40 bytes longer than the
original message as it stores authentication information and the
nonce alongside it.
encrypted = bob_box.encrypt(message)

However, if we need to use an explicit nonce, it can be passed along with the
message:

This is a nonce, it *MUST* only be used once, but it is not considered
secret and can be transmitted or stored alongside the ciphertext. A
good source of nonces are just sequences of 24 random bytes.
nonce = nacl.utils.random(Box.NONCE_SIZE)

encrypted = bob_box.encrypt(message, nonce)

Finally, the message is decrypted (regardless of how the nonce was generated):

Alice creates a second box with her private key to decrypt the message
alice_box = Box(skalice, pkbob)

Decrypt our message, an exception will be raised if the encryption was
tampered with or there was otherwise an error.
plaintext = alice_box.decrypt(encrypted)

Reference

	
class nacl.public.PublicKey(public_key, encoder)

	The public key counterpart to an Curve25519
PrivateKey for encrypting messages.

	Parameters:	
	public_key (bytes) – Encoded Curve25519 public key.

	encoder – A class that is able to decode the public_key.

	
class nacl.public.PrivateKey(private_key, encoder)

	Private key for decrypting messages using the Curve25519 algorithm.

Warning

This must be protected and remain secret. Anyone who
knows the value of your PrivateKey can decrypt
any message encrypted by the corresponding
PublicKey

	Parameters:	
	private_key (bytes) – The private key used to decrypt messages.

	encoder – A class that is able to decode the private_key.

	
public_key

	An instance of PublicKey that corresponds with
the private key.

	
classmethod generate()

	Generates a random PrivateKey object

	Returns:	An instance of PrivateKey.

	
class nacl.public.Box(private_key, public_key)

	The Box class boxes and unboxes messages between a pair of keys

The ciphertexts generated by Box include a 16
byte authenticator which is checked as part of the decryption. An invalid
authenticator will cause the decrypt function to raise an exception. The
authenticator is not a signature. Once you’ve decrypted the message you’ve
demonstrated the ability to create arbitrary valid message, so messages you
send are repudiable. For non-repudiable messages, sign them after
encryption.

	Parameters:	
	private_key – An instance of PrivateKey used
to encrypt and decrypt messages

	public_key – An instance of PublicKey used to
encrypt and decrypt messages

	
classmethod decode(encoded, encoder)

	Decodes a serialized Box.

	Returns:	An instance of Box.

	
encrypt(plaintext, nonce, encoder)

	Encrypts the plaintext message using the given nonce (or generates
one randomly if omitted) and returns the ciphertext encoded with the
encoder.

Warning

It is VITALLY important that the nonce is a nonce,
i.e. it is a number used only once for any given key. If you
fail to do this, you compromise the privacy of the messages
encrypted.

	Parameters:	
	plaintext (bytes) – The plaintext message to encrypt.

	nonce (bytes) – The nonce to use in the encryption.

	encoder – A class that is able to decode the ciphertext.

	Returns:	An instance of EncryptedMessage.

	
decrypt(ciphertext, nonce, encoder)

	Decrypts the ciphertext using the nonce (explicitly, when passed as a
parameter or implicitly, when omitted, as part of the ciphertext) and
returns the plaintext message.

	Parameters:	
	ciphertext (bytes) – The encrypted message to decrypt.

	nonce (bytes) – The nonce to use in the decryption.

	encoder – A class that is able to decode the plaintext.

	Return bytes:	The decrypted plaintext.

	
shared_key()

	Returns the Curve25519 shared secret, that can then be used as a key in
other symmetric ciphers.

Warning

It is VITALLY important that you use a nonce with your
symmetric cipher. If you fail to do this, you compromise the
privacy of the messages encrypted. Ensure that the key length of
your cipher is 32 bytes.

	Return bytes:	The shared secret.

Secret Key Encryption

Secret key encryption (also called symmetric key encryption) is analogous to a
safe. You can store something secret through it and anyone who has the key can
open it and view the contents. SecretBox functions as
just such a safe, and like any good safe any attempts to tamper with the
contents is easily detected.

Secret key encryption allows you to store or transmit data over insecure
channels without leaking the contents of that message, nor anything about it
other than the length.

Example

import nacl.secret
import nacl.utils

This must be kept secret, this is the combination to your safe
key = nacl.utils.random(nacl.secret.SecretBox.KEY_SIZE)

This is your safe, you can use it to encrypt or decrypt messages
box = nacl.secret.SecretBox(key)

This is our message to send, it must be a bytestring as SecretBox will
treat it as just a binary blob of data.
message = b"The president will be exiting through the lower levels"

PyNaCl can automatically generate a random nonce for us, making the encryption
very simple:

Encrypt our message, it will be exactly 40 bytes longer than the
original message as it stores authentication information and the
nonce alongside it.
encrypted = box.encrypt(message)

However, if we need to use an explicit nonce, it can be passed along with the
message:

This is a nonce, it *MUST* only be used once, but it is not considered
secret and can be transmitted or stored alongside the ciphertext. A
good source of nonces are just sequences of 24 random bytes.
nonce = nacl.utils.random(nacl.secret.SecretBox.NONCE_SIZE)

encrypted = box.encrypt(message, nonce)

Finally, the message is decrypted (regardless of how the nonce was generated):

Decrypt our message, an exception will be raised if the encryption was
tampered with or there was otherwise an error.
plaintext = box.decrypt(encrypted)

Requirements

Key

The 32 bytes key given to SecretBox must be kept secret.
It is the combination to your “safe” and anyone with this key will be able to
decrypt the data, or encrypt new data.

Nonce

The 24-byte nonce (Number used once [https://en.wikipedia.org/wiki/Cryptographic_nonce])
given to encrypt() and
decrypt() must NEVER be reused for a
particular key. Reusing a nonce may give an attacker enough information to
decrypt or forge other messages. A nonce is not considered secret and may be
freely transmitted or stored in plaintext alongside the ciphertext.

A nonce does not need to be random or unpredictable, nor does the method of
generating them need to be secret. A nonce could simply be a counter
incremented with each message encrypted, which can be useful in
connection-oriented protocols to reject duplicate messages (“replay
attacks”). A bidirectional connection could use the same key for both
directions, as long as their nonces never overlap (e.g. one direction always
sets the high bit to “1”, the other always sets it to “0”).

If you use a counter-based nonce along with a key that is persisted from one
session to another (e.g. saved to disk), you must store the counter along
with the key, to avoid accidental nonce reuse on the next session. For this
reason, many protocols derive a new key for each session, reset the counter
to zero with each new key, and never store the derived key or the counter.

You can safely generate random nonces by calling
random() with SecretBox.NONCE_SIZE.

Reference

	
class nacl.secret.SecretBox(key, encoder)

	The SecretBox class encrypts and decrypts messages using the given secret
key.

The ciphertexts generated by Secretbox include a 16
byte authenticator which is checked as part of the decryption. An invalid
authenticator will cause the decrypt function to raise an exception. The
authenticator is not a signature. Once you’ve decrypted the message you’ve
demonstrated the ability to create arbitrary valid message, so messages you
send are repudiable. For non-repudiable messages, sign them after
encryption.

	Parameters:	
	key (bytes) – The secret key used to encrypt and decrypt messages.

	encoder – A class that is able to decode the key.

	
encrypt(plaintext, nonce, encoder)

	Encrypts the plaintext message using the given nonce (or generates
one randomly if omitted) and returns the ciphertext encoded with the
encoder.

Warning

It is VITALLY important that the nonce is a nonce,
i.e. it is a number used only once for any given key. If you fail
to do this, you compromise the privacy of the messages encrypted.
Give your nonces a different prefix, or have one side use an odd
counter and one an even counter. Just make sure they are different.

	Parameters:	
	plaintext (bytes) – The plaintext message to encrypt.

	nonce (bytes) – The nonce to use in the encryption.

	encoder – A class that is able to decode the ciphertext.

	Returns:	An instance of EncryptedMessage.

	
decrypt(ciphertext, nonce, encoder)

	Decrypts the ciphertext using the nonce (explicitly, when passed as a
parameter or implicitly, when omitted, as part of the ciphertext) and
returns the plaintext message.

	Parameters:	
	ciphertext (bytes) – The encrypted message to decrypt.

	nonce (bytes) – The nonce to use in the decryption.

	encoder – A class that is able to decode the plaintext.

	Return bytes:	The decrypted plaintext.

Algorithm details

	Encryption:	Salsa20 stream cipher [https://en.wikipedia.org/wiki/Salsa20]

	Authentication:	Poly1305 MAC [https://en.wikipedia.org/wiki/Poly1305-AES]

Digital Signatures

You can use a digital signature for many of the same reasons that you might
sign a paper document. A valid digital signature gives a recipient reason to
believe that the message was created by a known sender such that they cannot
deny sending it (authentication and non-repudiation) and that the message was
not altered in transit (integrity).

Digital signatures allow you to publish a public key, and then you can use your
private signing key to sign messages. Others who have your public key can then
use it to validate that your messages are actually authentic.

Example

Signer’s perspective (SigningKey)

import nacl.encoding
import nacl.signing

Generate a new random signing key
signing_key = nacl.signing.SigningKey.generate()

Sign a message with the signing key
signed = signing_key.sign(b"Attack at Dawn")

Obtain the verify key for a given signing key
verify_key = signing_key.verify_key

Serialize the verify key to send it to a third party
verify_key_hex = verify_key.encode(encoder=nacl.encoding.HexEncoder)

Verifier’s perspective (VerifyKey)

import nacl.signing

Create a VerifyKey object from a hex serialized public key
verify_key = nacl.signing.VerifyKey(verify_key_hex, encoder=nacl.encoding.HexEncoder)

Check the validity of a message's signature
Will raise nacl.exceptions.BadSignatureError if the signature check fails
verify_key.verify(signed)

Reference

	
class nacl.signing.SigningKey(seed, encoder)

	Private key for producing digital signatures using the Ed25519 algorithm.

Signing keys are produced from a 32-byte (256-bit) random seed value. This
value can be passed into the SigningKey as a
bytes() whose length is 32.

Warning

This must be protected and remain secret. Anyone who knows
the value of your SigningKey or its seed can
masquerade as you.

	Parameters:	
	seed (bytes) – Random 32-byte value (i.e. private key).

	encoder – A class that is able to decode the seed.

	
verify_key

	An instance of VerifyKey (i.e. public key)
that corresponds with the signing key.

	
classmethod generate()

	Generates a random SigningKey object

	Returns:	An instance of SigningKey.

	
sign(message, encoder)

	Sign a message using this key.

	Parameters:	
	message (bytes) – The data to be signed.

	encoder – A class that is able to decode the signed message.

	Returns:	An instance of SignedMessage.

	
class nacl.signing.VerifyKey(key, encoder)

	The public key counterpart to an Ed25519 SigningKey
for producing digital signatures.

	Parameters:	
	key (bytes) – A serialized Ed25519 public key.

	encoder – A class that is able to decode the key.

	
verify(smessage, signature, encoder)

	Verifies the signature of a signed message.

	Parameters:	
	smessage (bytes) – The signed message to verify. This is either
the original message or the concated signature and message.

	signature (bytes) – The signature of the message to verify against.
If the value of smessage is the concated signature and message,
this parameter can be None.

	encoder – A class that is able to decode the secret message and
signature.

	Return bytes:	The message if successfully verified.

	Raises:	nacl.exceptions.BadSignatureError – This is raised if the
signature is invalid.

	
class nacl.signing.SignedMessage

	A bytes subclass that holds a messaged that has been signed by a
SigningKey.

	
signature

	The signature contained within the
SignedMessage.

	
message

	The message contained within the SignedMessage.

Ed25519

Ed25519 is a public-key signature system with several attractive features:

	Fast single-signature verification: Ed25519 takes only 273364 cycles
to verify a signature on Intel’s widely deployed Nehalem/Westmere lines of
CPUs. (This performance measurement is for short messages; for very long
messages, verification time is dominated by hashing time.) Nehalem and
Westmere include all Core i7, i5, and i3 CPUs released between 2008 and
2010, and most Xeon CPUs released in the same period.

	Even faster batch verification: Ed25519 performs a batch of 64
separate signature verifications (verifying 64 signatures of 64 messages
under 64 public keys) in only 8.55 million cycles, i.e., under 134000
cycles per signature. Ed25519 fits easily into L1 cache, so contention
between cores is negligible: a quad-core 2.4GHz Westmere verifies 71000
signatures per second, while keeping the maximum verification latency
below 4 milliseconds.

	Very fast signing: Ed25519 takes only 87548 cycles to sign a
message. A quad-core 2.4GHz Westmere signs 109000 messages per second.

	Fast key generation: Key generation is almost as fast as signing. There
is a slight penalty for key generation to obtain a secure random number
from the operating system; /dev/urandom under Linux costs about 6000
cycles.

	High security level: This system has a 2^128 security target; breaking it
has similar difficulty to breaking NIST P-256, RSA with ~3000-bit keys,
strong 128-bit block ciphers, etc. The best attacks known actually cost
more than 2^140 bit operations on average, and degrade quadratically in
success probability as the number of bit operations drops.

	Collision resilience: Hash-function collisions do not break this system.
This adds a layer of defense against the possibility of weakness in the
selected hash function.

	No secret array indices: Ed25519 never reads or writes data from secret
addresses in RAM; the pattern of addresses is completely predictable.
Ed25519 is therefore immune to cache-timing attacks, hyperthreading
attacks, and other side-channel attacks that rely on leakage of addresses
through the CPU cache.

	No secret branch conditions: Ed25519 never performs conditional branches
based on secret data; the pattern of jumps is completely predictable.
Ed25519 is therefore immune to side-channel attacks that rely on leakage of
information through the branch-prediction unit.

	Small signatures: Ed25519 signatures are only 512-bits (64 bytes), one
of the smallest signature sizes available.

	Small keys: Ed25519 keys are only 256-bits (32 bytes), making them small
enough to easily copy and paste. Ed25519 also allows the public key to be
derived from the private key, meaning that it doesn’t need to be included
in a serialized private key in cases you want both.

	Deterministic: Unlike (EC)DSA, Ed25519 does not rely on an entropy
source when signing messages (which has lead to catastrophic private key [http://www.mydigitallife.info/fail0verflow-hack-permanent-sony-ps3-crack-to-code-sign-homebrew-games-and-apps/]
compromises), but instead computes signature nonces from a combination of
a hash of the signing key’s “seed” and the message to be signed. This
avoids using an entropy source for nonces, which can be a potential attack
vector if the entropy source is not generating good random numbers. Even a
single reused nonce can lead to a complete disclosure of the private key in
these schemes, which Ed25519 avoids entirely by being deterministic instead
of tied to an entropy source.

The numbers 87548 and 273364 shown above are official
eBATS [http://bench.cr.yp.to/] reports for a Westmere CPU (Intel Xeon E5620,
hydra2).

Ed25519 signatures are elliptic-curve signatures, carefully engineered at
several levels of design and implementation to achieve very high speeds without
compromising security.

Algorithm

	Public Keys: Curve25519 high-speed elliptic curve cryptography [https://cr.yp.to/ecdh.html]

	Signatures: Ed25519 digital signature system [https://cr.yp.to/ecdh.html]

[image: _images/ed25519.png]

	k:	Ed25519 private key (passed into SigningKey)

	A:	Ed25519 public key derived from k

	M:	message to be signed

	R:	a deterministic nonce value calculated from a combination of private key
data RH and the message M

	S:	Ed25519 signature

Hashing

Cryptographic secure hash functions are irreversible transforms
of input data to a fixed length digest.

The standard properties of a cryptographic hash make these functions useful
both for standalone usage as data integrity checkers, as well as black-box
building blocks of other kind of algorithms and data structures.

All of the hash functions exposed in nacl.hash can be used
as data integrity checkers.

Integrity check examples

	Message’s creator perspective (sha256(),

	sha512(),
blake2b())

import nacl.encoding
import nacl.hash

HASHER = nacl.hash.sha256
could be nacl.hash.sha512 or nacl.hash.blake2b instead

define a 1024 bytes log message
msg = 16*b'256 BytesMessage'
digest = nacl.hash.HASHER(msg, encoder=nacl.encoding.HexEncoder)

now send msg and digest to the user
print(nacl.encoding.HexEncoder.encode(msg))
print(digest)

	Message’s user perspective (sha256(),

	sha512(),
blake2b())

from nacl.bindings.utils import sodium_memcmp
import nacl.encoding
import nacl.hash

HASHER = nacl.hash.sha256
could be nacl.hash.sha512 or nacl.hash.blake2b instead

we received a 1024 bytes long message and it hex encoded digest
received_msg = nacl.encoding.HexEncoder.decode(
b'3235362042797465734d6573736167653235362042797465734d657373616765'
b'3235362042797465734d6573736167653235362042797465734d657373616765'
b'3235362042797465734d6573736167653235362042797465734d657373616765'
b'3235362042797465734d6573736167653235362042797465734d657373616765'
b'3235362042797465734d6573736167653235362042797465734d657373616765'
b'3235362042797465734d6573736167653235362042797465734d657373616765'
b'3235362042797465734d6573736167653235362042797465734d657373616765'
b'3235362042797465734d6573736167653235362042797465734d657373616765'
)

dgst = b'12b413c70c148d79bb57a1542156c5f35e24ad77c38e8c0e776d055e827cdd45'

shortened = received_msg[:-1]
modified = b'modified' + received_msg[:-8]

orig_dgs = HASHER(received_msg, encoder=nacl.encoding.HexEncoder)
shrt_dgs = HASHER(shortened, encoder=nacl.encoding.HexEncoder)
mdfd_dgs = HASHER(modified, encoder=nacl.encoding.HexEncoder)

def eq_chk(dgs0, dgs1):
 if sodium_memcmp(dgs0, dgs1):
 return 'equals'
 return 'is different from'

MSG = 'Digest of {0} message {1} original digest'

for chk in (('original', orig_dgs),
 ('truncated', shrt_dgs),
 ('modified', mdfd_dgs)):

 print(MSG.format(chk[0], eq_chk(dgst, chk[1])))

Additional hashing usages for blake2b

As already hinted above, traditional cryptographic hash functions can be used
as building blocks for other uses, typically combining a secret-key with
the message via some construct like the HMAC one.

The blake2b hash function can be used directly both
for message authentication and key derivation, replacing the HMAC construct
and the HKDF one by setting the additional parameters key, salt
and person.

Please note that key stretching procedures like HKDF or
the one outlined in Key derivation are not suited to derive
a cryptographically-strong key from a low-entropy input like a plain-text
password or to compute a strong long-term stored hash used as password
verifier. See the Password hashing section for some more informations
and usage examples of the password hashing constructs provided in
pwhash.

Message authentication

To authenticate a message, using a secret key, the blake2b function
must be called as in the following example.

Message authentication example

import nacl.encoding
from nacl.hash import blake2b

msg = 16*b'256 BytesMessage'
msg2 = 16*b'256 bytesMessage'

auth_key = nacl.utils.random(size=64)
the simplest way to get a cryptographic quality auth_key
is to generate it with a cryptographic quality
random number generator

auth1_key = nacl.utils.random(size=64)
generate a different key, just to show the mac is changed
both with changing messages and with changing keys

mac0 = blake2b(msg, key=auth_key, encoder=nacl.encoding.HexEncoder)
mac1 = blake2b(msg, key=auth1_key, encoder=nacl.encoding.HexEncoder)
mac2 = blake2b(msg2, key=auth_key, encoder=nacl.encoding.HexEncoder)

for i, mac in enumerate((mac0, mac1, mac2)):
 print('Mac{0} is: {1}.'.format(i, mac))

Key derivation

The blake2b algorithm can replace a key derivation function by
following the lines of:

Key derivation example

import nacl.encoding
import nacl.utils
from nacl.hash import blake2b

master_key = nacl.utils.random(64)

derivation_salt = nacl.utils.random(16)

personalization = b'<DK usage>'

derived = blake2b(b'', key=master_key, salt=derivation_salt,
 personal=personalization,
 encoding=nacl.encoding.RawEncoder)

By repeating the key derivation procedure before encrypting our messages,
and sending the derivation_salt along with the encrypted message, we can
expect to never reuse a key, drastically reducing the risks which ensue from
such a reuse.

Password hashing

Password hashing and password based key derivation mechanisms in
actual use are all based on the idea of iterating a hash function
many times on a combination of the password and a random salt,
which is stored along with the hash, and allows verifying a proposed
password while avoiding clear-text storage.

The latest developments in password hashing have been memory-hard
mechanisms, pioneered by the scrypt mechanism [SD2012], which
is implemented by functions exposed in nacl.pwhash.

Scrypt usage

Password storage and verification

The scryptsalsa208sha256_str() internally
generates a random salt, and returns a scrypt hash already encoded
in ascii modular crypt format, which can be stored in a shadow-like file:

>>> import nacl.pwhash
>>> password = b'my password'
>>> for i in range(4):
... print(nacl.pwhash.scryptsalsa208sha256_str(password))
...
b'7C6..../....p9h...'
b'7C6..../....pVs...'
b'7C6..../....qW2...'
b'7C6..../....bxH...'

To verify a user-proposed password, the
scryptsalsa208sha256_verify() function
extracts the used salt and scrypt memory and operation count parameters
from the modular format string and checks the compliance of the
proposed password with the stored hash:

>>> import nacl.pwhash
>>> hashed = (b'7C6..../....qv5tF9KG2WbuMeUOa0TCoqwLHQ8s0TjQdSagne'
... b'9NvU0$3d218uChMvdvN6EwSvKHMASkZIG51XPIsZQDcktKyN7'
...)
>>> correct = b'my password'
>>> wrong = b'My password'
>>> # the result will be True on password match
... # on mismatch
... res = nacl.pwhash.verify_scryptsalsa208sha256(hashed, correct)
>>> print(res)
True
>>>
>>> res2 = nacl.pwhash.verify_scryptsalsa208sha256(hashed, wrong)
Traceback (most recent call last):
 ...
nacl.exceptions.InvalidkeyError: Wrong password
>>>

Key derivation

Alice needs to send a secret message to Bob, using a shared
password to protect the content. She generates a random salt,
combines it with the password using
kdf_scryptsalsa208sha256() and sends
the message along with the salt and key derivation parameters.

from nacl import pwhash, secret, utils

ops = pwhash.SCRYPT_OPSLIMIT_SENSITIVE
mem = pwhash.SCRYPT_MEMLIMIT_SENSITIVE

salt = utils.random(pwhash.SCRYPT_SALTBYTES)

password = b'password shared between Alice and Bob'
message = b"This is a message for Bob's eyes only"

Alices_key = pwhash.kdf_scryptsalsa208sha256(secret.SecretBox.KEY_SIZE,
 password, salt,
 opslimit=ops, memlimit=mem)
Alices_box = secret.SecretBox(Alices_key)
nonce = utils.random(secret.SecretBox.NONCE_SIZE)

encrypted = Alices_box.encrypt(message, nonce)

now Alice must send to Bob both the encrypted message
and the KDF parameters: salt, opslimit and memlimit;
using the same parameters **and password**
Bob is able to derive the correct key to decrypt the message

Bobs_key = pwhash.kdf_scryptsalsa208sha256(secret.SecretBox.KEY_SIZE,
 password, salt,
 opslimit=ops, memlimit=mem)
Bobs_box = secret.SecretBox(Bobs_key)
received = Bobs_box.decrypt(encrypted)
print(received)

if Eve manages to get the encrypted message, and tries to decrypt it
with a incorrect password, even if she does know all of the key
derivation parameters, she would derive a different key. Therefore
the decryption would fail and an exception would be raised:

>>> from nacl import pwhash, secret, utils
>>>
>>> ops = pwhash.SCRYPT_OPSLIMIT_SENSITIVE
>>> mem = pwhash.SCRYPT_MEMLIMIT_SENSITIVE
>>>
>>> salt = utils.random(pwhash.SCRYPT_SALTBYTES)
>>>
>>> guessed_pw = b'I think Alice shared this password with Bob'
>>>
>>> Eves_key = pwhash.kdf_scryptsalsa208sha256(secret.SecretBox.KEY_SIZE,
... guessed_pw, salt,
... opslimit=ops, memlimit=mem)
>>> Eves_box = secret.SecretBox(Eves_key)
>>> intercepted = Eves_box.decrypt(encrypted)
Traceback (most recent call last):
 ...
nacl.exceptions.CryptoError: Decryption failed. Ciphertext failed ...

	[SD2012]	A nice overview of password hashing history is available
in Solar Designer’s presentation
Password security: past, present, future [http://www.openwall.com/presentations/Passwords12-The-Future-Of-Hashing/]

Encoders

PyNaCl supports a simple method of encoding and decoding messages in different
formats. Encoders are simple classes with staticmethods that encode/decode and
are typically passed as a keyword argument encoder to various methods.

For example you can generate a signing key and encode it in hex with:

hex_key = nacl.signing.SigningKey.generate().encode(encoder=nacl.encoding.HexEncoder)

Then you can later decode it from hex:

signing_key = nacl.signing.SigningKey(hex_key, encoder=nacl.encoding.HexEncoder)

Built in Encoders

	
class nacl.encoding.RawEncoder

	

	
class nacl.encoding.HexEncoder

	

	
class nacl.encoding.Base16Encoder

	

	
class nacl.encoding.Base32Encoder

	

	
class nacl.encoding.Base64Encoder

	

	
class nacl.encoding.URLSafeBase64Encoder

	

Defining your own Encoder

Defining your own encoder is easy. Each encoder is simply a class with 2 static
methods. For example here is the hex encoder:

import binascii

class HexEncoder(object):

 @staticmethod
 def encode(data):
 return binascii.hexlify(data)

 @staticmethod
 def decode(data):
 return binascii.unhexlify(data)

Exceptions

All of the exceptions raised from PyNaCl-exposed methods/functions
are subclasses of nacl.exceptions.CryptoError. This means
downstream users can just wrap cryptographic operations inside a

try:
 # cryptographic operations
except nacl.exceptions.CryptoError:
 # cleanup after any kind of exception
 # raised from cryptographic-related operations

These are the exceptions implemented in nacl.exceptions:

PyNaCl specific exceptions

	
class CryptoError

	Base exception for all nacl related errors

	
class BadSignatureError

	Raised when the signature was forged or otherwise corrupt.

	
class InvalidkeyError

	Raised on password/key verification mismatch

PyNaCl exceptions mixing-in standard library ones

Both for clarity and for compatibility with previous releases
of the PyNaCl, the following exceptions mix-in the same-named
standard library exception to CryptoError.

	
class RuntimeError

	is a subclass of both CryptoError and standard library’s
RuntimeError, raised for internal library errors

	
class AssertionError

	is a subclass of both CryptoError and standard library’s
AssertionError, raised by default from
ensure() when the checked condition is False

	
class TypeError

	is a subclass of both CryptoError and standard library’s
TypeError

	
class ValueError

	is a subclass of both CryptoError and standard library’s
ValueError

Utilities

	
class nacl.utils.EncryptedMessage

	A bytes subclass that holds a message that has been encrypted by a
SecretBox or Box. The full
content of the bytes object is the combined nonce and
ciphertext.

	
nonce

	The nonce used during the encryption of the EncryptedMessage.

	
ciphertext

	The ciphertext contained within the EncryptedMessage.

	
nacl.utils.random(size=32)

	Returns a random bytestring with the given size.

	Parameters:	size (bytes) – The size of the random bytestring.

	Return bytes:	The random bytestring.

	
nacl.utils.ensure(cond, *args, raising=nacl.exceptions.AssertionError)

	Returns if a condition is true, otherwise raise a caller-configurable
Exception

	Parameters:	
	cond (bool [https://docs.python.org/2/library/functions.html#bool]) – the condition to be checked

	args (sequence) – the arguments to be passed to the exception’s
constructor

	raising (exception) – the exception to be raised if cond is False

nacl.hash

	
nacl.hash.sha256(message, encoder)

	Hashes message with SHA256.

	Parameters:	
	message (bytes) – The message to hash.

	encoder – A class that is able to encode the hashed message.

	Return bytes:	The hashed message.

	
nacl.hash.sha512(message, encoder)

	Hashes message with SHA512.

	Parameters:	
	message (bytes) – The message to hash.

	encoder – A class that is able to encode the hashed message.

	Return bytes:	The hashed message.

	
nacl.hash.blake2b(data, digest_size=BLAKE2B_BYTES, key=b'', salt=b'', person=b'', encoder=nacl.encoding.HexEncoder)

	One-shot blake2b digest

	Parameters:	
	data (bytes) – the digest input byte sequence

	digest_size (int [https://docs.python.org/2/library/functions.html#int]) – the requested digest size; must be at most
BLAKE2B_BYTES_MAX;
the default digest size is BLAKE2B_BYTES

	key (bytes) – the key to be set for keyed MAC/PRF usage; if set, the key
must be at most BLAKE2B_KEYBYTES_MAX long

	salt (bytes) – an initialization salt at most
BLAKE2B_SALTBYTES long; it will be zero-padded
if needed

	person (bytes) – a personalization string at most
BLAKE2B_PERSONALBYTES long; it will be
zero-padded if needed

	encoder (class) – the encoder to use on returned digest

	Returns:	encoded bytes data

	Return type:	the return type of the choosen encoder

	
nacl.hash.siphash24(message, key=b'', encoder=nacl.encoding.HexEncoder)

	Computes a keyed MAC of message using siphash-2-4

	Parameters:	
	message (bytes) – The message to hash.

	key (bytes(SIPHASH_KEYBYTES)) – the message authentication key to be used
It must be a SIPHASH_KEYBYTES long
bytes sequence

	encoder – A class that is able to encode the hashed message.

	Returns:	The hashed message.

	Return type:	bytes(SIPHASH_BYTES) long bytes sequence

nacl.hashlib

The nacl.hashlib module exposes directly usable implementations
of raw constructs which libsodium exposes with simplified APIs, like the
ones in nacl.hash and in nacl.pwhash.

The blake2b and scrypt() implementations
are as API compatible as possible with the corresponding ones added
to cpython standard library’s hashlib module in cpython’s version 3.6.

	
class nacl.hashlib.blake2b(data=b'', digest_size=BYTES, key=b'', salt=b'', person=b'')

	Returns an hash object which exposes an API mostly compatible
to python3.6’s hashlib.blake2b (the only difference being missing
support for tree hashing parameters in the contructor)

The methods update(), copy(),
digest() and hexdigest() have the same semantics
as described in hashlib documentation.

Each instance exposes the digest_size, block_size
name properties as required by hashlib API.

	
MAX_DIGEST_SIZE

	the maximum allowed value of the requested digest_size

	
MAX_KEY_SIZE

	the maximum allowed size of the password parameter

	
PERSON_SIZE

	the maximimum size of the personalization

	
SALT_SIZE

	the maximimum size of the salt

	
nacl.hashlib.scrypt(password, salt='', n=2**20, r=8, p=1, maxmem=2**25, dklen=64)

	Derive a raw cryptographic key using the scrypt KDF.

	Parameters:	
	password (bytes) – the input password

	salt (bytes) – a crypographically-strong random salt

	n (int [https://docs.python.org/2/library/functions.html#int]) – CPU/Memory cost factor

	r (int [https://docs.python.org/2/library/functions.html#int]) – block size multiplier: the used block size will be 128 * r

	p (int [https://docs.python.org/2/library/functions.html#int]) – requested parallelism: the number of indipendently running
scrypt constructs which will contribute to the final key
generation

	maxmem (int [https://docs.python.org/2/library/functions.html#int]) – maximum memory the whole scrypt construct will be
entitled to use

	dklen (int [https://docs.python.org/2/library/functions.html#int]) – length of the derived key

	Returns:	a buffer dklen bytes long containing the derived key

Implements the same signature as the hashlib.scrypt implemented
in cpython version 3.6

The recommended values for n, r, p in 2012 were n = 2**14, r = 8, p = 1;
as of 2016, libsodium suggests using n = 2**14, r = 8, p = 1
in a “interactive” setting and n = 2**20, r = 8, p = 1
in a “sensitive” setting.

The total memory usage will respectively be a little greater than 16MB
in the “interactive” setting, and a little greater than 1GB in the
“sensitive” setting.

Index

 A
 | B
 | C
 | D
 | E
 | G
 | H
 | I
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	AssertionError (built-in class)

B

 	
 	BadSignatureError (built-in class)

 	Base16Encoder (class in nacl.encoding)

 	Base32Encoder (class in nacl.encoding)

 	
 	Base64Encoder (class in nacl.encoding)

 	blake2b (class in nacl.hashlib)

 	blake2b() (in module nacl.hash)

 	Box (class in nacl.public)

C

 	
 	ciphertext (nacl.utils.EncryptedMessage attribute)

 	
 	CryptoError (built-in class)

D

 	
 	decode() (nacl.public.Box class method)

 	
 	decrypt() (nacl.public.Box method)

 	(nacl.secret.SecretBox method)

E

 	
 	encrypt() (nacl.public.Box method)

 	(nacl.secret.SecretBox method)

 	
 	EncryptedMessage (class in nacl.utils)

 	ensure() (in module nacl.utils)

G

 	
 	generate() (nacl.public.PrivateKey class method)

 	(nacl.signing.SigningKey class method)

H

 	
 	HexEncoder (class in nacl.encoding)

I

 	
 	InvalidkeyError (built-in class)

M

 	
 	MAX_DIGEST_SIZE (nacl.hashlib.blake2b attribute)

 	
 	MAX_KEY_SIZE (nacl.hashlib.blake2b attribute)

 	message (nacl.signing.SignedMessage attribute)

N

 	
 	nonce (nacl.utils.EncryptedMessage attribute)

P

 	
 	PERSON_SIZE (nacl.hashlib.blake2b attribute)

 	PrivateKey (class in nacl.public)

 	
 	public_key (nacl.public.PrivateKey attribute)

 	PublicKey (class in nacl.public)

R

 	
 	random() (in module nacl.utils)

 	
 	RawEncoder (class in nacl.encoding)

 	RuntimeError (built-in class)

S

 	
 	SALT_SIZE (nacl.hashlib.blake2b attribute)

 	scrypt() (in module nacl.hashlib)

 	SecretBox (class in nacl.secret)

 	sha256() (in module nacl.hash)

 	sha512() (in module nacl.hash)

 	
 	shared_key() (nacl.public.Box method)

 	sign() (nacl.signing.SigningKey method)

 	signature (nacl.signing.SignedMessage attribute)

 	SignedMessage (class in nacl.signing)

 	SigningKey (class in nacl.signing)

 	siphash24() (in module nacl.hash)

T

 	
 	TypeError (built-in class)

U

 	
 	URLSafeBase64Encoder (class in nacl.encoding)

V

 	
 	ValueError (built-in class)

 	verify() (nacl.signing.VerifyKey method)

 	
 	verify_key (nacl.signing.SigningKey attribute)

 	VerifyKey (class in nacl.signing)

 _static/ed25519.png
\.
signature

B byess1201
/

Troyies

_images/ed25519.png
\.
signature

B byess1201
/

Troyies

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		PyNaCl: Python binding to the Networking and Cryptography (NaCl) library

 		Public Key Encryption

 		Example

 		Reference

 		Secret Key Encryption

 		Example

 		Requirements

 		Key

 		Nonce

 		Reference

 		Algorithm details

 		Digital Signatures

 		Example

 		Reference

 		Ed25519

 		Algorithm

 		Hashing

 		Integrity check examples

 		Additional hashing usages for blake2b

 		Message authentication

 		Message authentication example

 		Key derivation

 		Key derivation example

 		Password hashing

 		Scrypt usage

 		Password storage and verification

 		Key derivation

 		Encoders

 		Built in Encoders

 		Defining your own Encoder

 		Exceptions

 		PyNaCl specific exceptions

 		PyNaCl exceptions mixing-in standard library ones

 		Utilities

 		nacl.hash

 		nacl.hashlib

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

