

PyNaCl: Python binding to the libsodium library

[image: Latest Version]
 [https://pypi.org/project/PyNaCl/][image: _images/pynacl1.svg]
 [https://travis-ci.org/pyca/pynacl][image: _images/coverage.svg]
 [https://codecov.io/github/pyca/pynacl?branch=master]PyNaCl is a Python binding to libsodium [https://github.com/jedisct1/libsodium], which is a fork of the
Networking and Cryptography library [https://nacl.cr.yp.to/]. These libraries have a stated goal of
improving usability, security and speed. It supports Python 2.7 and 3.4+ as
well as PyPy 2.6+.

Features

	Digital signatures

	Secret-key encryption

	Public-key encryption

	Hashing and message authentication

	Password based key derivation and password hashing

Contents

	Public Key Encryption
	Examples

	Reference

	Secret Key Encryption
	Example

	Requirements

	Reference

	Algorithm details

	Digital Signatures
	Example

	Reference

	Ed25519

	Hashing
	Integrity check examples

	Additional hashing usages for blake2b

	Message authentication

	Key derivation

	Password hashing
	Hashers and parameters

	Password storage and verification

	Key derivation

Support Features

	Encoders
	Built in Encoders

	Defining your own Encoder

	Exceptions
	PyNaCl specific exceptions

	PyNaCl exceptions mixing-in standard library ones

	Utilities

Api Documentation

	nacl.hash

	nacl.pwhash
	Functions exposed at top level

	Per-mechanism password hashing implementation modules
	nacl.pwhash.argon2id

	nacl.pwhash.argon2i

	nacl.pwhash.scrypt

	nacl.hashlib

The PyNaCl open source project

	Installation
	Binary wheel install

	Linux source build

	Doing A Release

	Reference vectors
	Imported reference vectors

	Custom generated reference vectors

	Changelog
	1.3.0 2018-09-26

	1.2.1 - 2017-12-04

	1.2.0 - 2017-11-01

	1.1.2 - 2017-03-31

	1.1.1 - 2017-03-15

	1.1.0 - 2017-03-14

	1.0.1 - 2016-01-24

	1.0 - 2016-01-23

	0.3.0 - 2015-03-04

Indices and tables

	Index

	Module Index

	Search Page

Public Key Encryption

Imagine Alice wants something valuable shipped to her. Because it’s valuable,
she wants to make sure it arrives securely (i.e. hasn’t been opened or
tampered with) and that it’s not a forgery (i.e. it’s actually from the sender
she’s expecting it to be from and nobody’s pulling the old switcheroo).

One way she can do this is by providing the sender (let’s call him Bob) with a
high-security box of her choosing. She provides Bob with this box, and
something else: a padlock, but a padlock without a key. Alice is keeping that
key all to herself. Bob can put items in the box then put the padlock onto it.
But once the padlock snaps shut, the box cannot be opened by anyone who
doesn’t have Alice’s private key.

Here’s the twist though: Bob also puts a padlock onto the box. This padlock
uses a key Bob has published to the world, such that if you have one of Bob’s
keys, you know a box came from him because Bob’s keys will open Bob’s padlocks
(let’s imagine a world where padlocks cannot be forged even if you know the
key). Bob then sends the box to Alice.

In order for Alice to open the box, she needs two keys: her private key that
opens her own padlock, and Bob’s well-known key. If Bob’s key doesn’t open the
second padlock, then Alice knows that this is not the box she was expecting
from Bob, it’s a forgery.

This bidirectional guarantee around identity is known as mutual authentication.

Examples

nacl.public.Box

The Box class uses the given public and private (secret)
keys to derive a shared key, which is used with the nonce given to encrypt the
given messages and to decrypt the given ciphertexts. The same shared key will
be generated from both pairing of keys, so given two keypairs belonging to
Alice (pkalice, skalice) and Bob (pkbob, skbob), the key derived from
(pkalice, skbob) will equal that from (pkbob, skalice).

This is how the system works:

import nacl.utils
from nacl.public import PrivateKey, Box

Generate Bob's private key, which must be kept secret
skbob = PrivateKey.generate()

Bob's public key can be given to anyone wishing to send
Bob an encrypted message
pkbob = skbob.public_key

Alice does the same and then Alice and Bob exchange public keys
skalice = PrivateKey.generate()
pkalice = skalice.public_key

Bob wishes to send Alice an encrypted message so Bob must make a Box with
his private key and Alice's public key
bob_box = Box(skbob, pkalice)

This is our message to send, it must be a bytestring as Box will treat it
as just a binary blob of data.
message = b"Kill all humans"

PyNaCl can automatically generate a random nonce for us, making the encryption
very simple:

Encrypt our message, it will be exactly 40 bytes longer than the
original message as it stores authentication information and the
nonce alongside it.
encrypted = bob_box.encrypt(message)

However, if we need to use an explicit nonce, it can be passed along with the
message:

This is a nonce, it *MUST* only be used once, but it is not considered
secret and can be transmitted or stored alongside the ciphertext. A
good source of nonces are just sequences of 24 random bytes.
nonce = nacl.utils.random(Box.NONCE_SIZE)

encrypted = bob_box.encrypt(message, nonce)

Finally, the message is decrypted (regardless of how the nonce was generated):

Alice creates a second box with her private key to decrypt the message
alice_box = Box(skalice, pkbob)

Decrypt our message, an exception will be raised if the encryption was
tampered with or there was otherwise an error.
plaintext = alice_box.decrypt(encrypted)
print(plaintext.decode('utf-8'))

Kill all humans

nacl.public.SealedBox

The SealedBox class encrypts messages addressed
to a specified key-pair by using ephemeral sender’s keypairs, which
will be discarded just after encrypting a single plaintext message.

This kind of construction allows sending messages, which only the recipient
can decrypt without providing any kind of cryptographic proof of sender’s
authorship.

Warning

By design, the recipient will have no means to trace
the ciphertext to a known author, since the sending
keypair itself is not bound to any sender’s identity, and
the sender herself will not be able to decrypt the ciphertext
she just created, since the private part of the key cannot be
recovered after use.

This is how the system works:

import nacl.utils
from nacl.public import PrivateKey, SealedBox

Generate Bob's private key, as we've done in the Box example
skbob = PrivateKey.generate()
pkbob = skbob.public_key

Alice wishes to send a encrypted message to Bob,
but prefers the message to be untraceable
sealed_box = SealedBox(pkbob)

This is Alice's message
message = b"Kill all kittens"

Encrypt the message, it will carry the ephemeral key public part
to let Bob decrypt it
encrypted = sealed_box.encrypt(message)

Now, Bob wants to read the secret message he just received; therefore
he must create a SealedBox using his own private key:

unseal_box = SealedBox(skbob)
decrypt the received message
plaintext = unseal_box.decrypt(encrypted)
print(plaintext.decode('utf-8'))

Kill all kittens

Reference

	
class nacl.public.PublicKey(public_key, encoder)

	The public key counterpart to an Curve25519
PrivateKey for encrypting messages.

	Parameters

	
	public_key (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Encoded Curve25519 public key.

	encoder – A class that is able to decode the public_key.

	
class nacl.public.PrivateKey(private_key, encoder)

	Private key for decrypting messages using the Curve25519 algorithm.

Warning

This must be protected and remain secret. Anyone who
knows the value of your PrivateKey can decrypt
any message encrypted by the corresponding
PublicKey

	Parameters

	
	private_key (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The private key used to decrypt messages.

	encoder – A class that is able to decode the private_key.

	
public_key

	An instance of PublicKey that corresponds with
the private key.

	
classmethod generate()

	Generates a random PrivateKey object

	Returns

	An instance of PrivateKey.

	
class nacl.public.Box(private_key, public_key)

	The Box class boxes and unboxes messages between a pair of keys

The ciphertexts generated by Box include a 16
byte authenticator which is checked as part of the decryption. An invalid
authenticator will cause the decrypt function to raise an exception. The
authenticator is not a signature. Once you’ve decrypted the message you’ve
demonstrated the ability to create arbitrary valid message, so messages you
send are repudiable. For non-repudiable messages, sign them after
encryption.

	Parameters

	
	private_key – An instance of PrivateKey used
to encrypt and decrypt messages

	public_key – An instance of PublicKey used to
encrypt and decrypt messages

	
classmethod decode(encoded, encoder)

	Decodes a serialized Box.

	Returns

	An instance of Box.

	
encrypt(plaintext, nonce, encoder)

	Encrypts the plaintext message using the given nonce (or generates
one randomly if omitted) and returns the ciphertext encoded with the
encoder.

Warning

It is VITALLY important that the nonce is a nonce,
i.e. it is a number used only once for any given key. If you
fail to do this, you compromise the privacy of the messages
encrypted.

	Parameters

	
	plaintext (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The plaintext message to encrypt.

	nonce (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The nonce to use in the encryption.

	encoder – A class that is able to decode the ciphertext.

	Returns

	An instance of EncryptedMessage.

	
decrypt(ciphertext, nonce, encoder)

	Decrypts the ciphertext using the nonce (explicitly, when passed as a
parameter or implicitly, when omitted, as part of the ciphertext) and
returns the plaintext message.

	Parameters

	
	ciphertext (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The encrypted message to decrypt.

	nonce (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The nonce to use in the decryption.

	encoder – A class that is able to decode the plaintext.

	Return bytes

	The decrypted plaintext.

	
shared_key()

	Returns the Curve25519 shared secret, that can then be used as a key in
other symmetric ciphers.

Warning

It is VITALLY important that you use a nonce with your
symmetric cipher. If you fail to do this, you compromise the
privacy of the messages encrypted. Ensure that the key length of
your cipher is 32 bytes.

	Return bytes

	The shared secret.

	
class nacl.public.SealedBox(receiver_key)

	The SealedBox class can box and unbox messages sent to a receiver key
using an ephemeral sending keypair.

	
encrypt(plaintext, encoder)

	Encrypt the message using a Box constructed from an ephemeral
key-pair and the receiver key.

The public part of the ephemeral key-pair will be enclosed in the
returned ciphertext.

The private part of the ephemeral key-pair will be scrubbed before
returning the ciphertext, therefore, the sender will not be able
to decrypt the message.

	Parameters

	
	plaintext (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The plaintext message to encrypt.

	encoder – A class that is able to decode the ciphertext.

	Return bytes

	The public part of the ephemeral keypair,
followed by the encrypted ciphertext

	
decrypt(ciphertext, encoder)

	Decrypt the message using a Box constructed from the receiver key
and the ephemeral key enclosed in the ciphertext.

	Parameters

	
	ciphertext (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The ciphertext message to decrypt.

	encoder – A class that is able to decode the ciphertext.

	Return bytes

	The decrypted message

Algorithm

	Public Keys: Curve25519 high-speed elliptic curve cryptography [https://cr.yp.to/ecdh.html]

Secret Key Encryption

Secret key encryption (also called symmetric key encryption) is analogous to a
safe. You can store something secret through it and anyone who has the key can
open it and view the contents. SecretBox functions as
just such a safe, and like any good safe any attempts to tamper with the
contents are easily detected.

Secret key encryption allows you to store or transmit data over insecure
channels without leaking the contents of that message, nor anything about it
other than the length.

Example

import nacl.secret
import nacl.utils

This must be kept secret, this is the combination to your safe
key = nacl.utils.random(nacl.secret.SecretBox.KEY_SIZE)

This is your safe, you can use it to encrypt or decrypt messages
box = nacl.secret.SecretBox(key)

This is our message to send, it must be a bytestring as SecretBox will
treat it as just a binary blob of data.
message = b"The president will be exiting through the lower levels"

PyNaCl can automatically generate a random nonce for us, making the encryption
very simple:

Encrypt our message, it will be exactly 40 bytes longer than the
original message as it stores authentication information and the
nonce alongside it.
encrypted = box.encrypt(message)

assert len(encrypted) == len(message) + box.NONCE_SIZE + box.MACBYTES

However, if we need to use an explicit nonce, it can be passed along with the
message:

This is a nonce, it *MUST* only be used once, but it is not considered
secret and can be transmitted or stored alongside the ciphertext. A
good source of nonces are just sequences of 24 random bytes.
nonce = nacl.utils.random(nacl.secret.SecretBox.NONCE_SIZE)

encrypted = box.encrypt(message, nonce)

If you need to get the ciphertext and the authentication data
without the nonce, you can get the ciphertext attribute of the
EncryptedMessage instance returned by
encrypt():

nonce = nacl.utils.random(nacl.secret.SecretBox.NONCE_SIZE)

encrypted = box.encrypt(message, nonce)

since we are transmitting the nonce by some other means,
we just need to get the ciphertext and authentication data

ctext = encrypted.ciphertext

ctext is just nacl.secret.SecretBox.MACBYTES longer
than the original message

assert len(ctext) == len(message) + box.MACBYTES

Finally, the message is decrypted (regardless of how the nonce was generated):

Decrypt our message, an exception will be raised if the encryption was
tampered with or there was otherwise an error.
plaintext = box.decrypt(encrypted)
print(plaintext.decode('utf-8'))

The president will be exiting through the lower levels

Requirements

Key

The 32 bytes key given to SecretBox must be kept secret.
It is the combination to your “safe” and anyone with this key will be able to
decrypt the data, or encrypt new data.

Nonce

The 24-byte nonce (Number used once [https://en.wikipedia.org/wiki/Cryptographic_nonce])
given to encrypt() and
decrypt() must NEVER be reused for a
particular key. Reusing a nonce may give an attacker enough information to
decrypt or forge other messages. A nonce is not considered secret and may be
freely transmitted or stored in plaintext alongside the ciphertext.

A nonce does not need to be random or unpredictable, nor does the method of
generating them need to be secret. A nonce could simply be a counter
incremented with each message encrypted, which can be useful in
connection-oriented protocols to reject duplicate messages (“replay
attacks”). A bidirectional connection could use the same key for both
directions, as long as their nonces never overlap (e.g. one direction always
sets the high bit to “1”, the other always sets it to “0”).

If you use a counter-based nonce along with a key that is persisted from one
session to another (e.g. saved to disk), you must store the counter along
with the key, to avoid accidental nonce reuse on the next session. For this
reason, many protocols derive a new key for each session, reset the counter
to zero with each new key, and never store the derived key or the counter.

You can safely generate random nonces by calling
random() with SecretBox.NONCE_SIZE.

Reference

	
class nacl.secret.SecretBox(key, encoder)

	The SecretBox class encrypts and decrypts messages using the given secret
key.

The ciphertexts generated by Secretbox include a 16
byte authenticator which is checked as part of the decryption. An invalid
authenticator will cause the decrypt function to raise an exception. The
authenticator is not a signature. Once you’ve decrypted the message you’ve
demonstrated the ability to create arbitrary valid message, so messages you
send are repudiable. For non-repudiable messages, sign them after
encryption.

	Parameters

	
	key (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The secret key used to encrypt and decrypt messages.

	encoder – A class that is able to decode the key.

	
encrypt(plaintext, nonce, encoder)

	Encrypts the plaintext message using the given nonce (or generates
one randomly if omitted) and returns the ciphertext encoded with the
encoder.

Warning

It is VITALLY important that the nonce is a nonce,
i.e. it is a number used only once for any given key. If you fail
to do this, you compromise the privacy of the messages encrypted.
Give your nonces a different prefix, or have one side use an odd
counter and one an even counter. Just make sure they are different.

	Parameters

	
	plaintext (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The plaintext message to encrypt.

	nonce (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The nonce to use in the encryption.

	encoder – A class that is able to decode the ciphertext.

	Returns

	An instance of EncryptedMessage.

	
decrypt(ciphertext, nonce, encoder)

	Decrypts the ciphertext using the nonce (explicitly, when passed as a
parameter or implicitly, when omitted, as part of the ciphertext) and
returns the plaintext message.

	Parameters

	
	ciphertext (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The encrypted message to decrypt.

	nonce (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The nonce to use in the decryption.

	encoder – A class that is able to decode the plaintext.

	Return bytes

	The decrypted plaintext.

Algorithm details

	Encryption

	Salsa20 stream cipher [https://en.wikipedia.org/wiki/Salsa20]

	Authentication

	Poly1305 MAC [https://en.wikipedia.org/wiki/Poly1305-AES]

Digital Signatures

You can use a digital signature for many of the same reasons that you might
sign a paper document. A valid digital signature gives a recipient reason to
believe that the message was created by a known sender such that they cannot
deny sending it (authentication and non-repudiation) and that the message was
not altered in transit (integrity).

Digital signatures allow you to publish a public key, and then you can use your
private signing key to sign messages. Others who have your public key can then
use it to validate that your messages are actually authentic.

Example

Signer’s perspective (SigningKey)

import nacl.encoding
import nacl.signing

Generate a new random signing key
signing_key = nacl.signing.SigningKey.generate()

Sign a message with the signing key
signed = signing_key.sign(b"Attack at Dawn")

Obtain the verify key for a given signing key
verify_key = signing_key.verify_key

Serialize the verify key to send it to a third party
verify_key_hex = verify_key.encode(encoder=nacl.encoding.HexEncoder)

Verifier’s perspective (VerifyKey)

import nacl.signing

Create a VerifyKey object from a hex serialized public key
verify_key = nacl.signing.VerifyKey(verify_key_hex,
 encoder=nacl.encoding.HexEncoder)

Check the validity of a message's signature
The message and the signature can either be passed separately or
concatenated together. These are equivalent:
verify_key.verify(signed)
verify_key.verify(signed.message, signed.signature)

Alter the signed message text
forged = signed[:-1] + bytes([int(signed[-1]) ^ 1])
Will raise nacl.exceptions.BadSignatureError, since the signature check
is failing
verify_key.verify(forged)

Traceback (most recent call last):
 ...
nacl.exceptions.BadSignatureError: Signature was forged or corrupt

Reference

	
class nacl.signing.SigningKey(seed, encoder)

	Private key for producing digital signatures using the Ed25519 algorithm.

Signing keys are produced from a 32-byte (256-bit) random seed value. This
value can be passed into the SigningKey as a
bytes() whose length is 32.

Warning

This must be protected and remain secret. Anyone who knows
the value of your SigningKey or its seed can
masquerade as you.

	Parameters

	
	seed (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Random 32-byte value (i.e. private key).

	encoder – A class that is able to decode the seed.

	
verify_key

	An instance of VerifyKey (i.e. public key)
that corresponds with the signing key.

	
classmethod generate()

	Generates a random SigningKey object

	Returns

	An instance of SigningKey.

	
sign(message, encoder)

	Sign a message using this key.

	Parameters

	
	message (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The data to be signed.

	encoder – A class that is able to decode the signed message.

	Returns

	An instance of SignedMessage.

	
class nacl.signing.VerifyKey(key, encoder)

	The public key counterpart to an Ed25519 SigningKey
for producing digital signatures.

	Parameters

	
	key (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – A serialized Ed25519 public key.

	encoder – A class that is able to decode the key.

	
verify(smessage, signature, encoder)

	Verifies the signature of a signed message.

	Parameters

	
	smessage (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The signed message to verify. This is either
the original message or the concated signature and message.

	signature (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The signature of the message to verify against.
If the value of smessage is the concated signature and message,
this parameter can be None.

	encoder – A class that is able to decode the secret message and
signature.

	Return bytes

	The message if successfully verified.

	Raises

	nacl.exceptions.BadSignatureError – This is raised if the
signature is invalid.

	
class nacl.signing.SignedMessage

	A bytes subclass that holds a messaged that has been signed by a
SigningKey.

	
signature

	The signature contained within the
SignedMessage.

	
message

	The message contained within the SignedMessage.

Ed25519

Ed25519 is a public-key signature system with several attractive features:

	Fast single-signature verification: Ed25519 takes only 273364 cycles
to verify a signature on Intel’s widely deployed Nehalem/Westmere lines of
CPUs. (This performance measurement is for short messages; for very long
messages, verification time is dominated by hashing time.) Nehalem and
Westmere include all Core i7, i5, and i3 CPUs released between 2008 and
2010, and most Xeon CPUs released in the same period.

	Even faster batch verification: Ed25519 performs a batch of 64
separate signature verifications (verifying 64 signatures of 64 messages
under 64 public keys) in only 8.55 million cycles, i.e., under 134000
cycles per signature. Ed25519 fits easily into L1 cache, so contention
between cores is negligible: a quad-core 2.4GHz Westmere verifies 71000
signatures per second, while keeping the maximum verification latency
below 4 milliseconds.

	Very fast signing: Ed25519 takes only 87548 cycles to sign a
message. A quad-core 2.4GHz Westmere signs 109000 messages per second.

	Fast key generation: Key generation is almost as fast as signing. There
is a slight penalty for key generation to obtain a secure random number
from the operating system; /dev/urandom under Linux costs about 6000
cycles.

	High security level: This system has a 2^128 security target; breaking it
has similar difficulty to breaking NIST P-256, RSA with ~3000-bit keys,
strong 128-bit block ciphers, etc. The best attacks known actually cost
more than 2^140 bit operations on average, and degrade quadratically in
success probability as the number of bit operations drops.

	Collision resilience: Hash-function collisions do not break this system.
This adds a layer of defense against the possibility of weakness in the
selected hash function.

	No secret array indices: Ed25519 never reads or writes data from secret
addresses in RAM; the pattern of addresses is completely predictable.
Ed25519 is therefore immune to cache-timing attacks, hyperthreading
attacks, and other side-channel attacks that rely on leakage of addresses
through the CPU cache.

	No secret branch conditions: Ed25519 never performs conditional branches
based on secret data; the pattern of jumps is completely predictable.
Ed25519 is therefore immune to side-channel attacks that rely on leakage of
information through the branch-prediction unit.

	Small signatures: Ed25519 signatures are only 512-bits (64 bytes), one
of the smallest signature sizes available.

	Small keys: Ed25519 keys are only 256-bits (32 bytes), making them small
enough to easily copy and paste. Ed25519 also allows the public key to be
derived from the private key, meaning that it doesn’t need to be included
in a serialized private key in cases you want both.

	Deterministic: Unlike (EC)DSA, Ed25519 does not rely on an entropy
source when signing messages (which has lead to catastrophic private key [https://arstechnica.com/gaming/2010/12/ps3-hacked-through-poor-implementation-of-cryptography/]
compromises), but instead computes signature nonces from a combination of
a hash of the signing key’s “seed” and the message to be signed. This
avoids using an entropy source for nonces, which can be a potential attack
vector if the entropy source is not generating good random numbers. Even a
single reused nonce can lead to a complete disclosure of the private key in
these schemes, which Ed25519 avoids entirely by being deterministic instead
of tied to an entropy source.

The numbers 87548 and 273364 shown above are official
eBATS [https://bench.cr.yp.to/] reports for a Westmere CPU (Intel Xeon E5620,
hydra2).

Ed25519 signatures are elliptic-curve signatures, carefully engineered at
several levels of design and implementation to achieve very high speeds without
compromising security.

Algorithm

	Signatures: Ed25519 digital signature system [https://ed25519.cr.yp.to/]

[image: _images/ed25519.png]

	k

	Ed25519 private key (passed into SigningKey)

	A

	Ed25519 public key derived from k

	M

	message to be signed

	R

	a deterministic nonce value calculated from a combination of private key
data RH and the message M

	S

	Ed25519 signature

Hashing

Cryptographic secure hash functions are irreversible transforms
of input data to a fixed length digest.

The standard properties of a cryptographic hash make these functions useful
both for standalone usage as data integrity checkers, as well as black-box
building blocks of other kind of algorithms and data structures.

All of the hash functions exposed in nacl.hash can be used
as data integrity checkers.

Integrity check examples

	Message’s creator perspective (sha256(),

	sha512(),
blake2b())

import nacl.encoding
import nacl.hash

HASHER = nacl.hash.sha256
could be nacl.hash.sha512 or nacl.hash.blake2b instead

define a 1024 bytes log message
msg = 16*b'256 BytesMessage'
digest = HASHER(msg, encoder=nacl.encoding.HexEncoder)

now send msg and digest to the user
print(nacl.encoding.HexEncoder.encode(msg))
print(digest)

b'3235362042797465734d6573736167653235362042797465734d6573736167653235362042797465734d6573736167653235362042797465734d6573736167653235362042797465734d6573736167653235362042797465734d6573736167653235362042797465734d6573736167653235362042797465734d6573736167653235362042797465734d6573736167653235362042797465734d6573736167653235362042797465734d6573736167653235362042797465734d6573736167653235362042797465734d6573736167653235362042797465734d6573736167653235362042797465734d6573736167653235362042797465734d657373616765'
b'12b413c70c148d79bb57a1542156c5f35e24ad77c38e8c0e776d055e827cdd45'

	Message’s user perspective (sha256(),

	sha512(),
blake2b())

from nacl.bindings.utils import sodium_memcmp
import nacl.encoding
import nacl.hash

HASHER = nacl.hash.sha256
could be nacl.hash.sha512 or nacl.hash.blake2b instead

we received a 1024 bytes long message and it hex encoded digest
received_msg = nacl.encoding.HexEncoder.decode(
b'3235362042797465734d6573736167653235362042797465734d657373616765'
b'3235362042797465734d6573736167653235362042797465734d657373616765'
b'3235362042797465734d6573736167653235362042797465734d657373616765'
b'3235362042797465734d6573736167653235362042797465734d657373616765'
b'3235362042797465734d6573736167653235362042797465734d657373616765'
b'3235362042797465734d6573736167653235362042797465734d657373616765'
b'3235362042797465734d6573736167653235362042797465734d657373616765'
b'3235362042797465734d6573736167653235362042797465734d657373616765'
)

dgst = b'12b413c70c148d79bb57a1542156c5f35e24ad77c38e8c0e776d055e827cdd45'

shortened = received_msg[:-1]
modified = b'modified' + received_msg[:-8]

orig_dgs = HASHER(received_msg, encoder=nacl.encoding.HexEncoder)
shrt_dgs = HASHER(shortened, encoder=nacl.encoding.HexEncoder)
mdfd_dgs = HASHER(modified, encoder=nacl.encoding.HexEncoder)

def eq_chk(dgs0, dgs1):
 if sodium_memcmp(dgs0, dgs1):
 return 'equals'
 return 'is different from'

MSG = 'Digest of {0} message {1} original digest'

for chk in (('original', orig_dgs),
 ('truncated', shrt_dgs),
 ('modified', mdfd_dgs)):

 print(MSG.format(chk[0], eq_chk(dgst, chk[1])))

Digest of original message equals original digest
Digest of truncated message is different from original digest
Digest of modified message is different from original digest

Additional hashing usages for blake2b

As already hinted above, traditional cryptographic hash functions can be used
as building blocks for other uses, typically combining a secret-key with
the message via some construct like the HMAC one.

The blake2b hash function can be used directly both
for message authentication and key derivation, replacing the HMAC construct
and the HKDF one by setting the additional parameters key, salt
and person.

Please note that key stretching procedures like HKDF or
the one outlined in Key derivation are not suited to derive
a cryptographically-strong key from a low-entropy input like a plain-text
password or to compute a strong long-term stored hash used as password
verifier. See the Password hashing section for some more informations
and usage examples of the password hashing constructs provided in
pwhash.

Message authentication

To authenticate a message, using a secret key, the blake2b function
must be called as in the following example.

Message authentication example

import nacl.encoding
import nacl.utils
from nacl.hash import blake2b

msg = 16*b'256 BytesMessage'
msg2 = 16*b'256 bytesMessage'

auth_key = nacl.utils.random(size=64)
the simplest way to get a cryptographic quality auth_key
is to generate it with a cryptographic quality
random number generator

auth1_key = nacl.utils.random(size=64)
generate a different key, just to show the mac is changed
both with changing messages and with changing keys

mac0 = blake2b(msg, key=auth_key, encoder=nacl.encoding.HexEncoder)
mac1 = blake2b(msg, key=auth1_key, encoder=nacl.encoding.HexEncoder)
mac2 = blake2b(msg2, key=auth_key, encoder=nacl.encoding.HexEncoder)

for i, mac in enumerate((mac0, mac1, mac2)):
 print('Mac{0} is: {1}.'.format(i, mac))

Mac0 is: b'...'.
Mac1 is: b'...'.
Mac2 is: b'...'.

Key derivation

The blake2b algorithm can replace a key derivation function by
following the lines of:

Key derivation example

import nacl.encoding
import nacl.utils
from nacl.hash import blake2b

master_key = nacl.utils.random(64)

derivation_salt = nacl.utils.random(16)

personalization = b'<DK usage>'

derived = blake2b(b'', key=master_key, salt=derivation_salt,
 person=personalization,
 encoder=nacl.encoding.RawEncoder)

By repeating the key derivation procedure before encrypting our messages,
and sending the derivation_salt along with the encrypted message, we can
expect to never reuse a key, drastically reducing the risks which ensue from
such a reuse.

Password hashing

Password hashing and password based key derivation mechanisms in
actual use are all based on the idea of iterating a hash function
many times on a combination of the password and a random salt,
which is stored along with the hash, and allows verifying a proposed
password while avoiding clear-text storage.

The latest developments in password hashing have been memory-hard
and tunable mechanisms, pioneered by scrypt [SD2012],
and followed-on by the schemes submitted to the Password Hashing
Competition [PHC].

The nacl.pwhash module exposes both the PHC recommended
partially data dependent argon2id and the data independent argon2i
mechanisms alongside to the scrypt one.

In the case of password storage, it’s usually suggested to give preference to
data dependent mechanisms, therefore the default mechanism suggested by
libsodium since version 1.0.15, and therefore by PyNaCl since version
1.2 is argon2id.

If you think in your use-case the risk of potential timing-attacks stemming
from data-dependency is greater than the potential time/memory trade-offs
stemming out of data-independency, you should prefer argon2i to
argon2id or scrypt

Hashers and parameters

PyNaCl exposes the functions and the associated parameters needed
to exploit the password hashing constructions in a uniform way
in the modules argon2id,
argon2i and scrypt,
therefore, if you need to change your choice of construction, you simply
need to replace one module name with another in the example below.

Further, if you just want to use a default choosen construction, you can
directly call nacl.pwhash.str() or nacl.pwhash.kdf()
to use the preferred construct in modular crypt password hashing
or key derivation mode.

Password storage and verification

All implementations of the modular crypt hasher str function
internally generate a random salt, and return a hash encoded
in ascii modular crypt format, which can be stored in a shadow-like file

>>> import nacl.pwhash
>>> password = b'my password'
>>> for i in range(4):
... print(nacl.pwhash.str(password))
...
b'$argon2id$v=19$m=65536,t=2,p=1$...'
b'$argon2id$v=19$m=65536,t=2,p=1$...'
b'$argon2id$v=19$m=65536,t=2,p=1$...'
b'$argon2id$v=19$m=65536,t=2,p=1$...'
>>>
>>> # if needed, each hasher is exposed
... # in just the same way:
... for i in range(4):
... print(nacl.pwhash.scrypt.str(password))
...
b'7C6..../...'
b'7C6..../...'
b'7C6..../...'
b'7C6..../...'
>>>
>>> for i in range(4):
... print(nacl.pwhash.argon2i.str(password))
...
b'$argon2i$v=19$m=32768,t=4,p=1$...'
b'$argon2i$v=19$m=32768,t=4,p=1$...'
b'$argon2i$v=19$m=32768,t=4,p=1$...'
b'$argon2i$v=19$m=32768,t=4,p=1$...'
>>>
>>> # and
...
>>> for i in range(4):
... print(nacl.pwhash.argon2id.str(password))
...
b'$argon2id$v=19$m=65536,t=2,p=1$...'
b'$argon2id$v=19$m=65536,t=2,p=1$...'
b'$argon2id$v=19$m=65536,t=2,p=1$...'
b'$argon2id$v=19$m=65536,t=2,p=1$...'
>>>

To verify a user-proposed password, the verify()
function checks the stored hash prefix, and dispatches verification to
the correct checker, which in turn extracts the used salt, memory
and operation count parameters from the modular format string
and checks the compliance of the proposed password with the stored hash

>>> import nacl.pwhash
>>> hashed = (b'7C6..../....qv5tF9KG2WbuMeUOa0TCoqwLHQ8s0TjQdSagne'
... b'9NvU0$3d218uChMvdvN6EwSvKHMASkZIG51XPIsZQDcktKyN7'
...)
>>> correct = b'my password'
>>> wrong = b'My password'
>>> # while the result will be True on password match,
... # on mismatch an exception will be raised
... res = nacl.pwhash.verify(hashed, correct)
>>> print(res)
True
>>>
>>> res2 = nacl.pwhash.verify_scryptsalsa208sha256(hashed, wrong)
Traceback (most recent call last):
 ...
nacl.exceptions.InvalidkeyError: Wrong password
>>> # the verify function raises an exception
... # also when it is run against a password hash
... # starting with a prefix it doesn't know
... wrong_hash = (b'$?$C6..../....qv5tF9KG2WbuMeUOa0TCoqwLHQ8s0TjQdSagne'
... b'9NvU0$3d218uChMvdvN6EwSvKHMASkZIG51XPIsZQDcktKyN7'
...)
>>> res = nacl.pwhash.verify(wrong_hash, correct)
Traceback (most recent call last):
 ...
nacl.exceptions.InvalidkeyError: given password_hash is not in a supported format

Key derivation

Alice needs to send a secret message to Bob, using a shared
password to protect the content. She generates a random salt,
combines it with the password using one of the kdf functions
and sends the message along with the salt and key derivation
parameters.

from nacl import pwhash, secret, utils

password = b'password shared between Alice and Bob'
message = b"This is a message for Bob's eyes only"

kdf = pwhash.argon2i.kdf
salt = utils.random(pwhash.argon2i.SALTBYTES)
ops = pwhash.argon2i.OPSLIMIT_SENSITIVE
mem = pwhash.argon2i.MEMLIMIT_SENSITIVE

or, if there is a need to use scrypt:
kdf = pwhash.scrypt.kdf
salt = utils.random(pwhash.scrypt.SALTBYTES)
ops = pwhash.scrypt.OPSLIMIT_SENSITIVE
mem = pwhash.scrypt.MEMLIMIT_SENSITIVE

Alices_key = kdf(secret.SecretBox.KEY_SIZE, password, salt,
 opslimit=ops, memlimit=mem)
Alices_box = secret.SecretBox(Alices_key)
nonce = utils.random(secret.SecretBox.NONCE_SIZE)

encrypted = Alices_box.encrypt(message, nonce)

now Alice must send to Bob both the encrypted message
and the KDF parameters: salt, opslimit and memlimit;
using the same kdf mechanism, parameters **and password**
Bob is able to derive the correct key to decrypt the message

Bobs_key = kdf(secret.SecretBox.KEY_SIZE, password, salt,
 opslimit=ops, memlimit=mem)
Bobs_box = secret.SecretBox(Bobs_key)
received = Bobs_box.decrypt(encrypted)
print(received.decode('utf-8'))

This is a message for Bob's eyes only

if Eve manages to get the encrypted message, and tries to decrypt it
with a incorrect password, even if she does know all of the key
derivation parameters, she would derive a different key. Therefore
the decryption would fail and an exception would be raised

>>> # ops, mem and salt are the same used by Alice
...
>>>
>>> guessed_pw = b'I think Alice shared this password with Bob'
>>>
>>> Eves_key = pwhash.argon2i.kdf(secret.SecretBox.KEY_SIZE,
... guessed_pw, salt,
... opslimit=ops, memlimit=mem)
>>> Eves_box = secret.SecretBox(Eves_key)
>>> intercepted = Eves_box.decrypt(encrypted)
Traceback (most recent call last):
 ...
nacl.exceptions.CryptoError: Decryption failed. Ciphertext failed ...

Contrary to the hashed password storage case where a serialization
format is well-defined, in the raw key derivation case the library
user must take care to store (and retrieve) both a reference to the kdf
used to derive the secret key and all the derivation parameters.
These parameters are needed to later generate the same secret key
from the password.

Module level constants for operation and memory cost tweaking

To help in selecting the correct values for the tweaking parameters for
the used construction, all the implementation modules provide suggested values
for the opslimit and memlimit parameters with the names:

	OPSLIMIT_INTERACTIVE

	MEMLIMIT_INTERACTIVE

	OPSLIMIT_SENSITIVE

	MEMLIMIT_SENSITIVE

	OPSLIMIT_MODERATE

	MEMLIMIT_MODERATE

and the corresponding minimum and maximum allowed values in:

	OPSLIMIT_MIN

	MEMLIMIT_MIN

	OPSLIMIT_MAX

	MEMLIMIT_MAX

Further, for each construction, pwhash modules expose the following
constants:

	STRPREFIX

	PWHASH_SIZE

	SALTBYTES

	BYTES_MIN

	BYTES_MAX

In general, the _INTERACTIVE values are recommended in the case of hashes
stored for interactive password checking, and lead to a sub-second password
verification time, with a memory consumption in the tens of megabytes range,
while the _SENSITIVE values are meant to store hashes for password protecting
sensitive data, and lead to hashing times exceeding one second, with memory
consumption in the hundred of megabytes range. The _MODERATE values, suggested
for argon2 mechanisms are meant to run the construct at a runtime and
memory cost intermediate between _INTERACTIVE and _SENSITIVE.

	SD2012

	A nice overview of password hashing history is available
in Solar Designer’s presentation
Password security: past, present, future [http://www.openwall.com/presentations/Passwords12-The-Future-Of-Hashing/]

	PHC

	The Argon2 recommendation is prominently shown in the
Password Hashing Competition [https://password-hashing.net/]
site, along to the special recognition shortlist and the original
call for submissions.

Encoders

PyNaCl supports a simple method of encoding and decoding messages in different
formats. Encoders are simple classes with staticmethods that encode/decode and
are typically passed as a keyword argument encoder to various methods.

For example you can generate a signing key and encode it in hex with:

hex_key = nacl.signing.SigningKey.generate().encode(encoder=nacl.encoding.HexEncoder)

Then you can later decode it from hex:

signing_key = nacl.signing.SigningKey(hex_key, encoder=nacl.encoding.HexEncoder)

Built in Encoders

	
class nacl.encoding.RawEncoder

	

	
class nacl.encoding.HexEncoder

	

	
class nacl.encoding.Base16Encoder

	

	
class nacl.encoding.Base32Encoder

	

	
class nacl.encoding.Base64Encoder

	

	
class nacl.encoding.URLSafeBase64Encoder

	

Defining your own Encoder

Defining your own encoder is easy. Each encoder is simply a class with 2 static
methods. For example here is the hex encoder:

import binascii

class HexEncoder(object):

 @staticmethod
 def encode(data):
 return binascii.hexlify(data)

 @staticmethod
 def decode(data):
 return binascii.unhexlify(data)

Exceptions

All of the exceptions raised from PyNaCl-exposed methods/functions
are subclasses of nacl.exceptions.CryptoError. This means
downstream users can just wrap cryptographic operations inside a

try:
 # cryptographic operations
except nacl.exceptions.CryptoError:
 # cleanup after any kind of exception
 # raised from cryptographic-related operations

These are the exceptions implemented in nacl.exceptions:

PyNaCl specific exceptions

	
class CryptoError

	Base exception for all nacl related errors

	
class BadSignatureError

	Raised when the signature was forged or otherwise corrupt.

	
class InvalidkeyError

	Raised on password/key verification mismatch

PyNaCl exceptions mixing-in standard library ones

Both for clarity and for compatibility with previous releases
of the PyNaCl, the following exceptions mix-in the same-named
standard library exception to CryptoError.

	
class RuntimeError

	is a subclass of both CryptoError and standard library’s
RuntimeError, raised for internal library errors

	
class AssertionError

	is a subclass of both CryptoError and standard library’s
AssertionError, raised by default from
ensure() when the checked condition is False

	
class TypeError

	is a subclass of both CryptoError and standard library’s
TypeError

	
class ValueError

	is a subclass of both CryptoError and standard library’s
ValueError

Utilities

	
class nacl.utils.EncryptedMessage

	A bytes subclass that holds a message that has been encrypted by a
SecretBox or Box. The full
content of the bytes object is the combined nonce and
ciphertext.

	
nonce

	The nonce used during the encryption of the EncryptedMessage.

	
ciphertext

	The ciphertext contained within the EncryptedMessage.

	
nacl.utils.random(size=32)

	Returns a random bytestring with the given size.

	Parameters

	size (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The size of the random bytestring.

	Return bytes

	The random bytestring.

	
nacl.utils.ensure(cond, *args, raising=nacl.exceptions.AssertionError)

	Returns if a condition is true, otherwise raise a caller-configurable
Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	Parameters

	
	cond (bool [https://docs.python.org/3/library/functions.html#bool]) – the condition to be checked

	args (sequence) – the arguments to be passed to the exception’s
constructor

	raising (exception) – the exception to be raised if cond is False

nacl.hash

	
nacl.hash.sha256(message, encoder)

	Hashes message with SHA256.

	Parameters

	
	message (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The message to hash.

	encoder – A class that is able to encode the hashed message.

	Return bytes

	The hashed message.

	
nacl.hash.sha512(message, encoder)

	Hashes message with SHA512.

	Parameters

	
	message (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The message to hash.

	encoder – A class that is able to encode the hashed message.

	Return bytes

	The hashed message.

	
nacl.hash.blake2b(data, digest_size=BLAKE2B_BYTES, key=b'', salt=b'', person=b'', encoder=nacl.encoding.HexEncoder)

	One-shot blake2b digest

	Parameters

	
	data (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – the digest input byte sequence

	digest_size (int [https://docs.python.org/3/library/functions.html#int]) – the requested digest size; must be at most
BLAKE2B_BYTES_MAX;
the default digest size is BLAKE2B_BYTES

	key (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – the key to be set for keyed MAC/PRF usage; if set, the key
must be at most BLAKE2B_KEYBYTES_MAX long

	salt (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – an initialization salt at most
BLAKE2B_SALTBYTES long; it will be zero-padded
if needed

	person (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – a personalization string at most
BLAKE2B_PERSONALBYTES long; it will be
zero-padded if needed

	encoder (class) – the encoder to use on returned digest

	Returns

	encoded bytes data

	Return type

	the return type of the choosen encoder

	
nacl.hash.siphash24(message, key=b'', encoder=nacl.encoding.HexEncoder)

	Computes a keyed MAC of message using siphash-2-4

	Parameters

	
	message (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The message to hash.

	key (bytes(SIPHASH_KEYBYTES)) – the message authentication key to be used
It must be a SIPHASH_KEYBYTES long
bytes sequence

	encoder – A class that is able to encode the hashed message.

	Returns

	The hashed message.

	Return type

	bytes(SIPHASH_BYTES) long bytes sequence

	
nacl.hash.siphashx24(message, key=b'', encoder=nacl.encoding.HexEncoder)

	
New in version 1.2.

Computes a keyed MAC of message using the extended output length
variant of siphash-2-4

	Parameters

	
	message (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The message to hash.

	key (bytes(SIPHASHX_KEYBYTES)) – the message authentication key to be used
It must be a SIPHASHX_KEYBYTES long
bytes sequence

	encoder – A class that is able to encode the hashed message.

	Returns

	The hashed message.

	Return type

	bytes(SIPHASHX_BYTES) long bytes sequence

nacl.pwhash

The package pwhash provides implementations of modern memory-hard
password hashing construction exposing modules with a uniform API.

Functions exposed at top level

The top level module only provides the functions implementing
ascii encoded hashing and verification.

	
nacl.pwhash.str(password, opslimit=OPSLIMIT_INTERACTIVE, memlimit=MEMLIMIT_INTERACTIVE)

	Returns a password verifier hash, generated with the password hasher
choosen as a default by libsodium.

	Parameters

	
	password (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – password used to seed the key derivation procedure;
it length must be between
PASSWD_MIN and
PASSWD_MAX

	opslimit (int [https://docs.python.org/3/library/functions.html#int]) – the time component (operation count)
of the key derivation procedure’s computational cost;
it must be between
OPSLIMIT_MIN and
OPSLIMIT_MAX

	memlimit (int [https://docs.python.org/3/library/functions.html#int]) – the memory occupation component
of the key derivation procedure’s computational cost;
it must be between
MEMLIMIT_MIN and
MEMLIMIT_MAX

	Returns

	the ascii encoded password hash along with a prefix encoding
the used hashing construct, the random generated salt and
the operation and memory limits used to generate the password hash

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

As of PyNaCl version 1.2 this is nacl.pwhash.argon2id.str().

New in version 1.2.

	
nacl.pwhash.verify(password_hash, password)

	This function checks if hashing the proposed password, with
the same construction and parameters encoded in the password hash
would generate the same encoded string, thus verifying the
correct password has been proposed in an authentication attempt.

New in version 1.2.

Module level constants

The top level module defines the constants related to the str()
hashing construct and its corresponding verify() password
verifier.

	
nacl.pwhash.PASSWD_MIN

	

	
nacl.pwhash.PASSWD_MAX

	minimum and maximum length of the password to hash

	
nacl.pwhash.PWHASH_SIZE

	maximum size of the encoded hash

	
nacl.pwhash.OPSLIMIT_MIN

	

	
nacl.pwhash.OPSLIMIT_MAX

	minimum and maximum operation count for the hashing construct

	
nacl.pwhash.MEMLIMIT_MIN

	

	
nacl.pwhash.MEMLIMIT_MAX

	minimum and maximum memory occupation for the hashing construct

and the recommended values for the opslimit and memlimit parameters

	
nacl.pwhash.MEMLIMIT_INTERACTIVE

	

	
nacl.pwhash.OPSLIMIT_INTERACTIVE

	recommended values for the interactive user authentication password
check case, leading to a sub-second hashing time

	
nacl.pwhash.MEMLIMIT_SENSITIVE

	

	
nacl.pwhash.OPSLIMIT_SENSITIVE

	recommended values for generating a password hash/derived key meant to protect
sensitive data, leading to a multi-second hashing time

	
nacl.pwhash.MEMLIMIT_MODERATE

	

	
nacl.pwhash.OPSLIMIT_MODERATE

	values leading to a hashing time and memory cost intermediate between the
interactive and the sensitive cases

Per-mechanism password hashing implementation modules

Along with the respective str() and verify() functions,
the modules implementing named password hashing constructs expose also
a kdf() function returning a raw pseudo-random bytes sequence
derived from the input parameters

nacl.pwhash.argon2id

	
nacl.pwhash.argon2id.kdf(size, password, salt, opslimit=OPSLIMIT_SENSITIVE, memlimit=MEMLIMIT_SENSITIVE, encoder=nacl.encoding.RawEncoder)

	Derive a size bytes long key from a caller-supplied
password and salt pair using the argon2id partially
data dependent memory-hard construct.

	Parameters

	
	size (int [https://docs.python.org/3/library/functions.html#int]) – derived key size, must be between
BYTES_MIN and
BYTES_MAX

	password (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – password used to seed the key derivation procedure;
it length must be between
PASSWD_MIN and
PASSWD_MAX

	salt (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – RANDOM salt used in the key derivation procedure;
its length must be exactly SALTBYTES

	opslimit (int [https://docs.python.org/3/library/functions.html#int]) – the time component (operation count)
of the key derivation procedure’s computational cost;
it must be between
OPSLIMIT_MIN and
OPSLIMIT_MAX

	memlimit (int [https://docs.python.org/3/library/functions.html#int]) – the memory occupation component
of the key derivation procedure’s computational cost;
it must be between
MEMLIMIT_MIN and
MEMLIMIT_MAX

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

The default settings for opslimit and memlimit are those deemed
correct for generating a key, which can be used to protect
sensitive data for a long time, leading to a multi-second
hashing time.

New in version 1.2.

	
nacl.pwhash.argon2id.str(password, opslimit=OPSLIMIT_INTERACTIVE, memlimit=MEMLIMIT_INTERACTIVE)

	Returns a password verifier hash, generated with the argon2id
password hasher.

See: nacl.pwhash.str() for the general API.

New in version 1.2.

	
nacl.pwhash.argon2id.verify(password_hash, password)

	This function verifies the proposed password, using
password_hash as a password verifier.

See: nacl.pwhash.verify() for the general API.

New in version 1.2.

Module level constants

The module defines the constants related to the kdf() raw hashing
construct

	
nacl.pwhash.argon2id.SALTBYTES

	the length of the random bytes sequence passed in as a salt to the
kdf()

	
nacl.pwhash.argon2id.BYTES_MIN

	

	
nacl.pwhash.argon2id.BYTES_MAX

	the minimum and maximum allowed values for the size parameter
of the kdf()

The meaning of each of the constants

	
nacl.pwhash.argon2id.PASSWD_MIN

	

	
nacl.pwhash.argon2id.PASSWD_MAX

	

	
nacl.pwhash.argon2id.PWHASH_SIZE

	

	
nacl.pwhash.argon2id.OPSLIMIT_MIN

	

	
nacl.pwhash.argon2id.OPSLIMIT_MAX

	

	
nacl.pwhash.argon2id.MEMLIMIT_MIN

	

	
nacl.pwhash.argon2id.MEMLIMIT_MAX

	

	
nacl.pwhash.argon2id.MEMLIMIT_INTERACTIVE

	

	
nacl.pwhash.argon2id.OPSLIMIT_INTERACTIVE

	

	
nacl.pwhash.argon2id.MEMLIMIT_SENSITIVE

	

	
nacl.pwhash.argon2id.OPSLIMIT_SENSITIVE

	

	
nacl.pwhash.argon2id.MEMLIMIT_MODERATE

	

	
nacl.pwhash.argon2id.OPSLIMIT_MODERATE

	is the same as in nacl.hash.

nacl.pwhash.argon2i

	
nacl.pwhash.argon2i.kdf(size, password, salt, opslimit=OPSLIMIT_SENSITIVE, memlimit=MEMLIMIT_SENSITIVE, encoder=nacl.encoding.RawEncoder)

	Derive a size bytes long key from a caller-supplied
password and salt pair using the argon2i
data independent memory-hard construct.

See: py:func:nacl.pwhash.argon2id.kdf for the general API.

New in version 1.2.

	
nacl.pwhash.argon2i.str(password, opslimit=OPSLIMIT_INTERACTIVE, memlimit=MEMLIMIT_INTERACTIVE)

	Returns a password verifier hash, generated with the argon2i
password hasher.

See: nacl.pwhash.str() for the general API.

New in version 1.2.

	
nacl.pwhash.argon2i.verify(password_hash, password)

	This function verifies the proposed password, using
password_hash as a password verifier.

See: nacl.pwhash.verify() for the general API.

New in version 1.2.

Module level constants

The meaning of each of the constants

	
nacl.pwhash.argon2i.PASSWD_MIN

	

	
nacl.pwhash.argon2i.PASSWD_MAX

	

	
nacl.pwhash.argon2i.PWHASH_SIZE

	

	
nacl.pwhash.argon2i.SALTBYTES

	

	
nacl.pwhash.argon2i.BYTES_MIN

	

	
nacl.pwhash.argon2i.BYTES_MAX

	

	
nacl.pwhash.argon2i.OPSLIMIT_MIN

	

	
nacl.pwhash.argon2i.OPSLIMIT_MAX

	

	
nacl.pwhash.argon2i.MEMLIMIT_MIN

	

	
nacl.pwhash.argon2i.MEMLIMIT_MAX

	

	
nacl.pwhash.argon2i.MEMLIMIT_INTERACTIVE

	

	
nacl.pwhash.argon2i.OPSLIMIT_INTERACTIVE

	

	
nacl.pwhash.argon2i.MEMLIMIT_SENSITIVE

	

	
nacl.pwhash.argon2i.OPSLIMIT_SENSITIVE

	

	
nacl.pwhash.argon2i.MEMLIMIT_MODERATE

	

	
nacl.pwhash.argon2i.OPSLIMIT_MODERATE

	is the same as in nacl.pwhash
and nacl.pwhash.argon2id

nacl.pwhash.scrypt

	
nacl.pwhash.scrypt.kdf(size, password, salt, opslimit=OPSLIMIT_SENSITIVE, memlimit=MEMLIMIT_SENSITIVE, encoder=nacl.encoding.RawEncoder)

	Derive a size bytes long key from a caller-supplied
password and salt pair using the scrypt
data dependent memory-hard construct.

See: nacl.pwhash.argon2id.kdf() for the general API.

New in version 1.2.

	
nacl.pwhash.scrypt.str(password, opslimit=OPSLIMIT_INTERACTIVE, memlimit=MEMLIMIT_INTERACTIVE)

	Returns a password verifier hash, generated with the scrypt
password hasher.

See: nacl.pwhash.str() for the general API.

New in version 1.2.

	
nacl.pwhash.scrypt.verify(password_hash, password)

	This function verifies the proposed password, using
password_hash as a password verifier.

See: py:func:nacl.pwhash.verify for the general API.

New in version 1.2.

Module level constants

The meaning of each of the constants

	
nacl.pwhash.scrypt.PASSWD_MIN

	

	
nacl.pwhash.scrypt.PASSWD_MAX

	

	
nacl.pwhash.scrypt.PWHASH_SIZE

	

	
nacl.pwhash.scrypt.SALTBYTES

	

	
nacl.pwhash.scrypt.BYTES_MIN

	

	
nacl.pwhash.scrypt.BYTES_MAX

	

	
nacl.pwhash.scrypt.OPSLIMIT_MIN

	

	
nacl.pwhash.scrypt.OPSLIMIT_MAX

	

	
nacl.pwhash.scrypt.MEMLIMIT_MIN

	

	
nacl.pwhash.scrypt.MEMLIMIT_MAX

	

	
nacl.pwhash.scrypt.MEMLIMIT_INTERACTIVE

	

	
nacl.pwhash.scrypt.OPSLIMIT_INTERACTIVE

	

	
nacl.pwhash.scrypt.MEMLIMIT_SENSITIVE

	

	
nacl.pwhash.scrypt.OPSLIMIT_SENSITIVE

	

	
nacl.pwhash.scrypt.MEMLIMIT_MODERATE

	

	
nacl.pwhash.scrypt.OPSLIMIT_MODERATE

	is the same as in nacl.pwhash
and nacl.pwhash.argon2id

nacl.hashlib

The nacl.hashlib module exposes directly usable implementations
of raw constructs which libsodium exposes with simplified APIs, like the
ones in nacl.hash and in nacl.pwhash.

The blake2b and scrypt() implementations
are as API compatible as possible with the corresponding ones added
to cpython standard library’s hashlib module in cpython’s version 3.6.

	
class nacl.hashlib.blake2b(data=b'', digest_size=BYTES, key=b'', salt=b'', person=b'')

	Returns an hash object which exposes an API mostly compatible
to python3.6’s hashlib.blake2b (the only difference being missing
support for tree hashing parameters in the contructor)

The methods update(), copy(),
digest() and hexdigest() have the same semantics
as described in hashlib documentation.

Each instance exposes the digest_size, block_size
name properties as required by hashlib API.

	
MAX_DIGEST_SIZE

	the maximum allowed value of the requested digest_size

	
MAX_KEY_SIZE

	the maximum allowed size of the password parameter

	
PERSON_SIZE

	the maximimum size of the personalization

	
SALT_SIZE

	the maximimum size of the salt

	
nacl.hashlib.scrypt(password, salt='', n=2**20, r=8, p=1, maxmem=2**25, dklen=64)

	Derive a raw cryptographic key using the scrypt KDF.

	Parameters

	
	password (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – the input password

	salt (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – a crypographically-strong random salt

	n (int [https://docs.python.org/3/library/functions.html#int]) – CPU/Memory cost factor

	r (int [https://docs.python.org/3/library/functions.html#int]) – block size multiplier: the used block size will be 128 * r

	p (int [https://docs.python.org/3/library/functions.html#int]) – requested parallelism: the number of indipendently running
scrypt constructs which will contribute to the final key
generation

	maxmem (int [https://docs.python.org/3/library/functions.html#int]) – maximum memory the whole scrypt construct will be
entitled to use

	dklen (int [https://docs.python.org/3/library/functions.html#int]) – length of the derived key

	Returns

	a buffer dklen bytes long containing the derived key

Implements the same signature as the hashlib.scrypt implemented
in cpython version 3.6

The recommended values for n, r, p in 2012 were n = 2**14, r = 8, p = 1;
as of 2016, libsodium suggests using n = 2**14, r = 8, p = 1
in a “interactive” setting and n = 2**20, r = 8, p = 1
in a “sensitive” setting.

The total memory usage will respectively be a little greater than 16MB
in the “interactive” setting, and a little greater than 1GB in the
“sensitive” setting.

Installation

Binary wheel install

PyNaCl ships as a binary wheel on OS X, Windows and Linux manylinux1 1 ,
so all dependencies are included. Make sure you have an up-to-date pip
and run:

$ pip install pynacl

Linux source build

PyNaCl relies on libsodium [https://github.com/jedisct1/libsodium], a portable C library. A copy is bundled
with PyNaCl so to install you can run:

$ pip install pynacl

If you’d prefer to use the version of libsodium provided by your
distribution, you can disable the bundled copy during install by running:

$ SODIUM_INSTALL=system pip install pynacl

Warning

Usage of the legacy easy_install command provided by setuptools
is generally discouraged, and is completely unsupported in PyNaCl’s case.

	1

	manylinux1 wheels [https://www.python.org/dev/peps/pep-0513/]
are built on a baseline linux environment based on Centos 5.11
and should work on most x86 and x86_64 glibc based linux environments.

Doing A Release

To run a PyNaCl release follow these steps:

	Update the version number in src/nacl/__init__.py.

	Update README.rst changelog section with the date of the release.

	Send a pull request with these items and wait for it to be merged.

	Run invoke release {version}

Once the release script completes you can verify that the sdist and wheels are
present on PyPI and then send a new PR to bump the version to the next major
version (e.g. 1.2.0.dev1).

Reference vectors

In addition to the policy of keeping any code path in PyNaCl covered by
unit tests, the output from cryptographic primitives and constructions
must be verified as being conformant to the reference implementations
or standards.

Imported reference vectors

Wherever possible it is the PyNaCl project’s policy to use existing
reference vectors for primitives or constructions. These vectors should
ideally be in their original format, but it is acceptable to make minimal
changes to ease parsing at our discretion.

Box construction

The reference vector for testing the nacl.public.Box
implementation come from libsodium’s test/default/box.c and
test/default/box2.c and the corresponding expected outputs
in test/default/box.exp and test/default/box2.exp

SecretBox construction

The reference vector for testing the nacl.secret.SecretBox
implementation come from libsodium’s test/default/secretbox.c
and the corresponding expected outputs in test/default/secretbox.exp

chacha20poly1305

The reference vectors for both the legacy draft-agl-tls-chacha20poly1305
and the IETF ratified rfc7539 chacha20poly1305 constructions are taken
from libressl version 2.5.5 tests/aeadtests.txt, excluding the shortened
authentication tag vectors, since libsodium only supports full sized tags.

xchacha20poly1305

The reference vector for the xchacha20poly1305 construction is taken
from the first test in libsodium’s test/default/aead_xchacha20poly1305.c,
which defines the parameters, and the corresponding expected output from
aead_xchacha20poly1305.exp.

siphash24 and siphashx24

The reference vectors for both the original and the 128 bit variants of
the siphash-2-4 construction are taken from the reference code sources.
In particular, the original expected results come from siphash’s vectors.h,
while the key and the input messages have been generated following
the respective definitions in siphash’s test.c.

Custom generated reference vectors

In cases where there are no standardized test vectors, or the available ones
are not applicable to libsodium’s implementation, test vectors are custom
generated.

	Argon2 constructs reference vectors
	Vector generation

	Code for the vector generator driver

	Blake2b reference vectors
	Vector generation

	scrypt reference vectors

	SealedBox reference vectors
	Vector generation

	Vector test

	Source code for the vector checker utility

	secretstream reference vectors
	Vector generation

	Source code for the vector checker utility

	Building the bundled library
	Linux systems

Argon2 constructs reference vectors

Since libsodium implements a different API for argon2 contructs
than the one exposed by the reference implementation available at
The password hash Argon2… <https://github.com/P-H-C/phc-winner-argon2/>,
the kats data provided along to the reference implementation sources
cannot be directly used as test vectors in PyNaCl tests.

Therefore, we are using a python driver for the command line
argon2, which can be built following the instruction in the
reference implementation sources.

Vector generation

The argondriver.py requires setting, via the command line option
-x, the path to the argon2 executable; and as a default generates
hex-encoded raw hash data on standard output.

Setting the -e option on the command line allows generating
modular crypt formatted hashes.

The other command line options influence the minimum and maximum sizes
of generated parameters as shown in the driver’s command line help,
which is printed by inserting the -h option in the command line.

To generate vector data files in tests/data, the argondriver.py
have been called to generate password hashes with parameters compatible
with libsodium’s implementation; in particular, the minimum operations
count must be 3 for argon2i and 1 for argon2id, and the salt
length must be 16 for raw hashes, and can vary for modular crypt formatted
hashes.

The full command lines used in generating the vactors are:

	for raw argon2i

	python3 docs/vectors/python/argondriver.py \
 -x ~/phc-winner-argon2/argon2 \
 -c argon2i \
 -s 16 -S 16 -p 8 -P 16 -m 14 -M 18 \
 -l 18 -L 32 -t 3 -T 5 -n 10 \
 -w tests/data/raw_argon2id_hashes.json

	for raw argon2id

	python3 docs/vectors/python/argondriver.py \
 -x ~/phc-winner-argon2/argon2 \
 -c argon2id \
 -s 16 -S 16 -p 8 -P 16 -m 14 -M 18 \
 -l 18 -L 32 -t 1 -T 5 -n 10 \
 -w tests/data/raw_argon2id_hashes.json

	for modular crypt argon2i

	python3 docs/vectors/python/argondriver.py \
 -x ~/phc-winner-argon2/argon2 \
 -c argon2i -e \
 -s 8 -S 16 -p 8 -P 16 -m 14 -M 18 \
 -l 18 -L 32 -t 3 -T 5 -n 10 \
 -w tests/data/modular_crypt_argon2id_hashes.json

	for modular crypt argon2id

	python3 docs/vectors/python/argondriver.py \
 -x ~/phc-winner-argon2/argon2 \
 -c argon2id -e \
 -s 8 -S 16 -p 8 -P 16 -m 14 -M 18 \
 -l 18 -L 32 -t 1 -T 5 -n 10 \
 -w tests/data/modular_crypt_argon2id_hashes.json

Code for the vector generator driver

The code for argondriver.py is available inside
the docs/vectors/python directory of PyNaCl distribution
and can also be directly downloaded from
argondriver.py.

argondriver.py

#!/usr/bin/python
#
from __future__ import division, print_function

import argparse
import json
import random
import string
import subprocess
import sys

class argonRunner(object):
 GOODCHARS = string.ascii_letters + string.digits

 def __init__(self, args):
 self.exe = args.exe
 self.mnsaltlen = args.mnsaltlen
 self.mnpwlen = args.mnpwlen
 self.mndgstlen = args.mndgstlen
 self.mnmem = args.mnmem
 self.mniters = args.mniters
 self.mxsaltlen = args.mxsaltlen
 self.mxpwlen = args.mxpwlen
 self.mxdgstlen = args.mxdgstlen
 self.mxmem = args.mxmem
 self.mxiters = args.mxiters
 self.encoded = args.encoded
 self.rng = random.SystemRandom()
 self.version = args.version
 self.construct = args.construct
 self.maxcount = args.n
 self.count = 0

 def _runOnce(self, passwd, salt, dgst_len, maxmem, iters):
 """
 """
 argv = [self.exe, salt.encode('ascii'),
 '-t', '{0:2d}'.format(iters),
 '-m', '{0:2d}'.format(maxmem),
 '-l', '{0:3d}'.format(dgst_len),
 '-v', self.version,
]

 if self.encoded:
 argv.append('-e')
 mode = 'crypt'
 else:
 argv.append('-r')
 mode = 'raw'
 if self.construct == 'argon2i':
 argv.append('-i')
 elif self.construct == 'argon2d':
 argv.append('-d')
 elif self.construct == 'argon2id':
 argv.append('-id')
 p = subprocess.Popen(argv, stdin=subprocess.PIPE,
 stdout=subprocess.PIPE)
 out, err = p.communicate(passwd.encode('ascii'))
 return dict(passwd=passwd, salt=salt, dgst_len=dgst_len,
 maxmem=2 ** maxmem, iters=iters, mode=mode,
 pwhash=out.decode('ascii').rstrip(),
 construct=self.construct,
)

 def _genSalt(self):
 sltln = self.rng.randint(self.mnsaltlen, self.mxsaltlen)
 chrs = [self.rng.choice(self.GOODCHARS) for x in range(sltln)]
 return ''.join(chrs)

 def _genPw(self):
 pwln = self.rng.randint(self.mnpwlen, self.mxpwlen)
 chrs = [self.rng.choice(self.GOODCHARS) for x in range(pwln)]
 return ''.join(chrs)

 def __next__(self):
 if self.count >= self.maxcount:
 raise StopIteration
 psw = self._genPw()
 slt = self._genSalt()
 mem = self.rng.randint(self.mnmem, self.mxmem)
 iters = self.rng.randint(self.mniters, self.mxiters)
 dgstln = self.rng.randint(self.mndgstlen, self.mxdgstlen)
 rs = self._runOnce(psw, slt, dgstln, mem, iters)
 self.count += 1
 return rs

 def __iter__(self):
 return self

 next = __next__

if __name__ == '__main__':

 p = argparse.ArgumentParser()
 p.add_argument('-x', '--executable', dest='exe', required=True)
 p.add_argument('-c', '--construction', dest='construct',
 type=str, default='argon2i')
 p.add_argument('-v', '--version', dest='version',
 type=str, default='13')
 p.add_argument('-e', '--encoded', dest='encoded', default=False,
 action='store_true',)
 p.add_argument('-s', '--min-salt-len', dest='mnsaltlen', type=int,
 default=8)
 p.add_argument('-S', '--max-salt-len', dest='mxsaltlen', type=int,
 default=8)
 p.add_argument('-p', '--min-password-len', dest='mnpwlen',
 type=int, default=16)
 p.add_argument('-P', '--max-password-len', dest='mxpwlen',
 type=int, default=16)
 p.add_argument('-l', '--min-digest-len', dest='mndgstlen',
 type=int, default=64)
 p.add_argument('-L', '--max-digest-len', dest='mxdgstlen',
 type=int, default=64)
 p.add_argument('-m', '--min-memory-exponent', dest='mnmem',
 type=int, default=16)
 p.add_argument('-M', '--max-memory-exponent', dest='mxmem',
 type=int, default=16)
 p.add_argument('-t', '--min-time-opscount', dest='mniters',
 type=int, default=3)
 p.add_argument('-T', '--max-time-opscount', dest='mxiters',
 type=int, default=3)
 p.add_argument('-n', '--count', dest='n', type=int, default=10)
 p.add_argument('-w', '--output', dest='outfile',
 default=sys.stdout, type=argparse.FileType('w'))

 args = p.parse_args()

 res = [x for x in argonRunner(args)]

 json.dump(res, args.outfile, indent=2, separators=(',', ': '))

Blake2b reference vectors

While the blake2b construction is a keyed hash and variable output
length algorithm which can optionally be initialized with limited
size salt and personalization parameters, the known answers [https://github.com/BLAKE2/BLAKE2/blob/master/testvectors/blake2-kat.json] json
file in the reference blake2 [https://github.com/BLAKE2/BLAKE2] sources just provides vectors for
default length hash with empty salt and personalization.

To fill this test gap, we used both the pyblake and the libsodium implemented
generators provided by crypto test vectors [https://github.com/jedisct1/crypto-test-vectors] for the blake2b mechanism
to generate twenty vectors in each of
test/data/crypto-test-vectors-blake2-nosalt-nopersonalization.txt
and
test/data/crypto-test-vectors-blake2-salt-personalization.txt

Vector generation

After cloning the github project with

$ git clone https://github.com/jedisct1/crypto-test-vectors.git

the needed source files will be available in the nosalt-nopersonalization
and salt-personalization subdirectories of
crypto-test-vectors/crypto/hash/blake2/blake2b/.

To run the python generators, after ensuring the needed pyblake2 [https://pythonhosted.org/pyblake2/] module
is available in the python environment, it will be enough to run the following
commands at the shell prompt:

$ BLAKE="${PWD}/crypto-test-vectors/crypto/hash/blake2/blake2b"
$ NOPERS="${BLAKE}/nosalt-nopersonalization/generators"
$ PERSON="${BLAKE}/salt-personalization/generators"
$ python "${NOPERS}/pyblake2/generator.py" 10 > py_nopers_vectors
$ python "${PERSON}/pyblake2/generator.py" 10 > py_pers_vectors

On linux systems, after installing the required libsodium development
package, the C-language generators, can get built by running:

$ BLAKE="${PWD}/crypto-test-vectors/crypto/hash/blake2/blake2b"
$ NOPERS="${BLAKE}/nosalt-nopersonalization/generators"
$ PERSON="${BLAKE}/salt-personalization/generators"
$ for i in "${NOPERS}/libsodium" "${PERSON}/libsodium"; do (cd "${i}" && make); done

and then run by executing:

$ BLAKE="${PWD}/crypto-test-vectors/crypto/hash/blake2/blake2b"
$ NOPERS="${BLAKE}/nosalt-nopersonalization/generators"
$ PERSON="${BLAKE}/salt-personalization/generators"
$ "${NOPERS}/libsodium/generator" 10 > py_nopers_vectors_c
$ "${PERSON}/libsodium/generator" 10 > py_pers_vectors_c

scrypt reference vectors

Libsodium exposes both a simplified scrypt KDF/password storage API
which parametrizes the CPU and memory load in term of a opslimit parameter
and a memlimit one, and a “traditional” low-level API parametrized in terms
of a (N, r, p) triple.

While we used the vectors from RFC 7914 [https://tools.ietf.org/html/rfc7914] to test the traditional API,
the simplified API is only implemented by libsodium, and therefore we just
added a KDF generation check using the ascii encoded passphrase
“The quick brown fox jumps over the lazy dog.”, and verified the results
were the same we could get from the version of hashlib.scrypt, as provided
in python version 3.6 stdlib.

>>> import hashlib
>>> import nacl
>>> import nacl.bindings
>>> import nacl.pwhash.scrypt
>>> pick_scrypt_params = nacl.bindings.nacl_bindings_pick_scrypt_params
>>> nacl.pwhash.scrypt.kdf(32,
... b'The quick brown fox jumps over the lazy dog.',
... b"ef537f25c895bfa782526529a9b63d97",
... opslimit=20000, memlimit=100 * (2 ** 20))
b'\x10e>\xc8A8\x11\xde\x07\xf1\x0f\x98EG\xe6}V]\xd4yN\xae\xd3P\x87yP\x1b\xc7+n*'
>>> n_log2, r, p = pick_scrypt_params(20000, 100 * (2 ** 20))
>>> print(2 ** n_log2, r, p)
1024 8 1
>>> hashlib.scrypt(b'The quick brown fox jumps over the lazy dog.',
... salt=b"ef537f25c895bfa782526529a9b63d97",
... n=1024, r=8, p=1, dklen=32)
b'\x10e>\xc8A8\x11\xde\x07\xf1\x0f\x98EG\xe6}V]\xd4yN\xae\xd3P\x87yP\x1b\xc7+n*'

SealedBox reference vectors

Since libsodium’s tests do not provide reference data for the SealedBox
construction, the implementation is verified with a sealbox_test_vectors
utility program that produces and checks custom test vectors
by making specific calls to libsodium API.

To build the sealbox_test_vectors you need a C language compiler,
a prebuilt libsodium library more recent than version 1.0.3 and the
corresponding include headers.

In a UNIX-like programming environment you should then execute:

$ cc -o sealbox_test_vectors sealbox_test_vectors.c -lsodium -lc

If you prefer using a locally compiled installation of the bundled sources,
refer to Building the bundled library and then run:

$ cc -o sealbox_test_vectors sealbox_test_vectors.c \
 ${SODIUMINCL} ${SODIUMLIB} -lsodium -lc

Vector generation

When called with one or more command line arguments, sealbox_test_vectors
will generate the number of hex-encoded vectors requested as first argument,
with the optional second and third arguments influencing the length of the
randomly generated messages:

$./sealbox_test_vectors 1
XXXX... XXXX... <len>:XXXX... <len>:XXXX...

The second argument, if present, sets both a minimum and a maximum length
on generated messages, overriding the default 128 bytes values
respectively with the supplied value and with twice the supplied value.

The third argument, if present, sets the maximum length of generated
messages.

Vector test

When called without command line arguments, sealbox_test_vectors
will parse and hex-decode the lines given as standard input and
check if decoding the encrypted message will return the original
message. A “OK”/”FAIL” tag will be appended to the input line to
signify success/failure of the test.

To check correct “round-trip” behavior, you can run sealbox_test_vectors
as a test vector generator against itself:

$./sealbox_test_vectors 1 | ./sealbox_test_vectors
XXXX... XXXX... <len>:XXXX... <len>:XXXX... OK

If you want to check the vectors distributed with PyNaCl’s sources,
after setting the environment variable PYNACL_BASE to the directory
where the unpacked source for PyNaCl has been extracted/cloned,
you could run:

$./sealbox_test_vectors < ${PYNACL_BASE}/tests/data/sealed_box_ref.txt
77076d ... 8c86 OK

Source code for the vector checker utility

The source code for sealbox_test_vectors is available inside
the docs/vectors/c-source directory of PyNaCl distribution
and can also be directly downloaded from
sealbox_test_vectors.c.

sealbox_test_vectors.c

/*
 * Copyright 2017 Donald Stufft and individual contributors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * Test vector generator/checker for libsodium's box_seal APIs
 * to build in a unix-like environment, use a command line like
 * $ cc sealbox_test_vectors.c -I${IPATH} -L${LPATH} -lsodium -o sealbox_test_vectors
 * with IPATH and LPATH defined to respectively point to libsodium's include path
 * and to the directory containing the link library libsodium.a or libsodium.o
 *
 */
#include <stdio.h>
#include <string.h>
#include <sodium.h>

int checkone (char *hxsecret, char *hxpub, size_t ptlen, char *hxplaintext,
	 size_t crlen, char *hxencrypted) {

 int pklen = crypto_box_PUBLICKEYBYTES;
 int sklen = crypto_box_SECRETKEYBYTES;

 char *skr = sodium_malloc (sklen);
 char *pub = sodium_malloc (pklen);
 char *txt = sodium_malloc (ptlen);
 char *crpt = sodium_malloc (crlen);
 char *outp = sodium_malloc (ptlen);

 int rs = sodium_hex2bin (skr, sklen, hxsecret, 2 * sklen,
 NULL, NULL, NULL);
 rs |= sodium_hex2bin (pub, pklen, hxpub, 2 * pklen, NULL, NULL, NULL);
 rs |= sodium_hex2bin (txt, ptlen, hxplaintext, strlen (hxplaintext),
 NULL, NULL, NULL);
 rs |= sodium_hex2bin (crpt, crlen, hxencrypted, strlen (hxencrypted),
 NULL, NULL, NULL);

 if (rs == 0)
 rs = crypto_box_seal_open (outp, crpt, crlen, pub, skr);
 if (rs == 0)
 rs = sodium_memcmp (outp, txt, ptlen);

 sodium_free (crpt);
 sodium_free (txt);
 sodium_free (skr);
 sodium_free (pub);

 return rs;
}

void gentestline (int minmsglen, int maxmsglen) {

 int pklen = crypto_box_PUBLICKEYBYTES;
 int sklen = crypto_box_SECRETKEYBYTES;
 size_t txtlen = minmsglen + randombytes_uniform (maxmsglen - minmsglen + 1);
 size_t encrlen = txtlen + crypto_box_SEALBYTES;

 char *skr = sodium_malloc (sklen);
 char *pub = sodium_malloc (pklen);
 char *txt = sodium_malloc (txtlen);
 char *crpt = sodium_malloc (encrlen);

 crypto_box_keypair (pub, skr);
 randombytes_buf (txt, txtlen);

 crypto_box_seal (crpt, txt, txtlen, pub);

 char *hskr = sodium_malloc (sklen * 2 + 1);
 char *hpub = sodium_malloc (pklen * 2 + 1);
 char *htxt = sodium_malloc (txtlen * 2 + 1);
 char *hkrp = sodium_malloc (encrlen * 2 + 1);

 sodium_bin2hex (hskr, sklen * 2 + 1, skr, sklen);
 sodium_bin2hex (hpub, pklen * 2 + 1, pub, pklen);
 sodium_bin2hex (htxt, txtlen * 2 + 1, txt, txtlen);
 sodium_bin2hex (hkrp, encrlen * 2 + 1, crpt, encrlen);

 printf ("%s\t%s\t%zu:%s\t%zu:%s\n", hskr, hpub, txtlen, htxt, encrlen, hkrp);
}

int main (int argc, char **argv) {
/*
 * If called without any argument, the resulting executable will
 * read and hex decode the secret and public part of the receiver key,
 * the original plaintext and the ciphertext, and then
 * check if the message resulting from decrypting ciphertext with
 * the secret key is equal to the given plaintext
 *
 * If called with a sequence of integer arguments, sealbox_test_vectors
 * will generate the requested number of reference lines, encrypting
 * random messages.
 *
 */
 if (sodium_init () == -1) {
 exit (1);
 }

 if (argc == 1) {
 size_t lsz = 0;
 char *line = NULL;
 ssize_t lln = 0;
 int res;
 char hxsecret[2 * crypto_box_SECRETKEYBYTES + 1];
 char hxpub[2 * crypto_box_PUBLICKEYBYTES + 1];
 char hxplaintext[2048 + 1];
 char hxencrypted[2048 + 2 * crypto_box_SEALBYTES + 1];
 char cmpplaintext[5 + 2048 + 1];
 char cmpencrypted[5 + 2048 + 2 * crypto_box_SEALBYTES + 1];
 size_t ptlen = 0;
 size_t crlen = 0;

 while (lln = getline (&line, &lsz, stdin) > 0) {
 if (lln > 0) {
 if (strncmp (line, "#", 1) == 0 ||
 strncmp (line, "\n", 1) == 0 ||
 strncmp (line, "\r", 1) == 0)
 continue;

 sscanf (line, "%s%s%s%s",
 hxsecret, hxpub, cmpplaintext, cmpencrypted);
 sscanf (cmpplaintext, "%zu:%s",
 &ptlen, hxplaintext);
 sscanf (cmpencrypted, "%zu:%s",
 &crlen, hxencrypted);
 if (ptlen == 0)
 memset(hxplaintext, 0, sizeof(hxplaintext));
 if (crlen == 0)
 memset(hxencrypted, 0, sizeof(hxencrypted));
 res = checkone (hxsecret, hxpub, ptlen, hxplaintext, crlen, hxencrypted);
 char *rsstr = (res == 0) ? "OK" : "FAIL";
 printf ("%s\t%s\t%zu:%s\t%zu:%s\t%s\n",
 hxsecret, hxpub, ptlen, hxplaintext, crlen, hxencrypted, rsstr);
 }
 free (line);
 line = NULL;
 }
 } else {
 int nlines = atoi (argv[1]);
 int minmsgl = 128;
 int maxmsgl = 128;
 if (argc == 3) {
 minmsgl = atoi (argv[2]);
 maxmsgl = atoi (argv[2]) * 2;
 } else if (argc == 4) {
 minmsgl = atoi (argv[2]);
 maxmsgl = atoi (argv[3]);
 }
 for (int i = 0; i < nlines; i++) {
 gentestline (minmsgl, maxmsgl);
 }
 }
}

secretstream reference vectors

Since libsodium’s tests do not provide reference data for the secretstream
construction, the implementation is verified with a
secretstream_test_vector utility program that produces custom test vectors
by making specific calls to the libsodium API.

To build the secretstream_test_vector you need a C language compiler,
a prebuilt libsodium library more recent than version 1.0.14 and the
corresponding include headers.

In a UNIX-like programming environment you should then execute:

$ cc -o secretstream_test_vector secretstream_test_vector.c -lsodium -lc

If you prefer using a locally compiled installation of the bundled sources,
refer to Building the bundled library and then run:

$ cc -o secretstream_test_vector secretstream_test_vector.c \
 ${SODIUMINCL} ${SODIUMLIB} -lsodium -lc

Vector generation

$./secretstream_test_vector -h
Usage: secretstream_test_vector [-c num_chunks] [-r]

When called, the program will output a JSON dictionary containing
key, header, and chunks. The chunks is a list of individual
messages passed to crypto_secretstream_xchacha20poly1305_push containing
tag, message, ad and ciphertext keys.

Source code for the vector checker utility

The source code for secretstream_test_vector is available inside
the docs/vectors/c-source directory of PyNaCl distribution
and can also be directly downloaded from
secretstream_test_vector.c.

secretstream_test_vector.c

/*
 * Copyright 2018 Donald Stufft and individual contributors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * Test vector generator/checker for libsodium's crypto_secretstream APIs
 * to build in a unix-like environment, use a command line like
 * $ cc secretstream_test_vector.c \
 * -I${IPATH} -L${LPATH} -lsodium \
 * -o secretstream_test_vector
 * with IPATH and LPATH defined to respectively point to libsodium's include path
 * and to the directory containing the link library libsodium.a or libsodium.o
 *
 */
#include <stdio.h>
#include <string.h>
#include <sodium.h>
#include <unistd.h>

#define MAX_AD_SIZE 32
#define MAX_CHUNK_SIZE 512
#define CHK(cmd) \
 do { if ((rc = (cmd)) != 0) { \
 fprintf(stderr, "api call failed, code=%d", rc); \
 exit(1); \
 }} while(0)

int usage(int argc, char **argv) {
 fprintf(stderr, "Usage: %s [-c num_chunks] [-r]\n", argv[0]);
 return 1;
}

int main (int argc, char **argv) {
 int c, rc;
 int num_chunks = 1;
 int rekey = 0;

 crypto_secretstream_xchacha20poly1305_state state;
 unsigned char header[crypto_secretstream_xchacha20poly1305_HEADERBYTES];
 unsigned char key[crypto_secretstream_xchacha20poly1305_KEYBYTES];
 unsigned char m[MAX_CHUNK_SIZE];
 unsigned char ad[MAX_AD_SIZE];
 unsigned char ct[MAX_CHUNK_SIZE + crypto_secretstream_xchacha20poly1305_ABYTES];
 char key_hex[sizeof(key) * 2 + 1];
 char header_hex[sizeof(header) * 2 + 1];
 char m_hex[sizeof(m) * 2 + 1];
 char ad_hex[sizeof(ad) * 2 + 1];
 char ct_hex[sizeof(ct) * 2 + 1];
 unsigned long long m_len, ad_len, ct_len;
 unsigned char tag;

 while ((c = getopt(argc, argv, "hc:r")) != -1) {
 switch (c) {
 case 'c':
 num_chunks = atoi(optarg);
 break;
 case 'r':
 rekey = 1;
 break;
 case 'h':
 return usage(argc, argv);
 default:
 return 1;
 }
 }
 if (optind < argc) return usage(argc, argv);

 if (sodium_init() == -1) {
 exit(1);
 }

 /* output format:
 * {
 * "key": "hex",
 * "header": "hex",
 * "chunks": [
 * {
 * "tag": 0,
 * "ad": "hex",
 * "message": "hex",
 * "ciphertext": "hex"
 * },
 * ...
 *]
 * }
 */

 crypto_secretstream_xchacha20poly1305_keygen(key);
 CHK(crypto_secretstream_xchacha20poly1305_init_push(&state, header, key));
 sodium_bin2hex(key_hex, sizeof key_hex, key, sizeof key);
 sodium_bin2hex(header_hex, sizeof header_hex, header, sizeof header);
 printf("{\n \"key\": \"%s\",\n \"header\": \"%s\",\n \"chunks\": [\n",
 key_hex, header_hex);
 for (c = 1 ; c <= num_chunks ; ++c) {
 tag =
 c == num_chunks ? crypto_secretstream_xchacha20poly1305_TAG_FINAL
 : rekey ? crypto_secretstream_xchacha20poly1305_TAG_REKEY
 : crypto_secretstream_xchacha20poly1305_TAG_MESSAGE;
 ad_len = randombytes_uniform(MAX_AD_SIZE);
 m_len = randombytes_uniform(MAX_CHUNK_SIZE - 1) + 1;
 randombytes_buf(m, m_len);
 randombytes_buf(ad, ad_len);
 CHK(crypto_secretstream_xchacha20poly1305_push(
 &state, ct, &ct_len, m, m_len, ad, ad_len, tag));
 sodium_bin2hex(m_hex, m_len * 2 + 1, m, m_len);
 if (ad_len > 0) {
 sodium_bin2hex(ad_hex, ad_len * 2 + 1, ad, ad_len);
 }
 sodium_bin2hex(ct_hex, ct_len * 2 + 1, ct, ct_len);
 printf(" {\n"
 " \"tag\": %d,\n \"ad\": %s%s%s,\n"
 " \"message\": \"%s\",\n \"ciphertext\": \"%s\"\n"
 " }%s\n",
 tag,
 ad_len > 0 ? "\"" : "",
 ad_len > 0 ? ad_hex : "null",
 ad_len > 0 ? "\"" : "",
 m_hex,
 ct_hex,
 c < num_chunks ? "," : "");
 }
 printf("]\n}\n");

 return 0;
}

Building the bundled library

If you you want to avoid a system-wide installation of libsodium’s
development files just for compiling and running the tests, you can
instead install the library and header files inside PyNaCl’s sources.

Linux systems

On Linux (and presumably other UNIX-like systems), after entering the
PyNaCl source directory you must execute the following commands:

$ mkdir -p build/libsodium
$ cd build/libsodium
$../../src/libsodium/configure --prefix=$PWD --disable-shared
$ make
$ make install
$ cd ../..

If all went well,

$ ls build/libsodium/{lib,include}

should generate something like the following output:

build/libsodium/include:
sodium sodium.h

build/libsodium/lib:
libsodium.a libsodium.la pkgconfig

If you now define and export the

$ SODIUMINCL="-I${PWD}/build/libsodium/include"
$ export SODIUMINCL
$ SODIUMLIB="-L${PWD}/build/libsodium/lib"
$ export SODIUMLIB

environment variables, you can instruct the compiler to use the
just-installed library by simply dereferencing the path flags
on the c compier command line

$ cc ${SODIUMINCL} ${SODIUMLIB}

Changelog

1.3.0 2018-09-26

	Added support for Python 3.7.

	Update libsodium to 1.0.16.

	Run and test all code examples in PyNaCl docs through sphinx’s
doctest builder.

	Add low-level bindings for chacha20-poly1305 AEAD constructions.

	Add low-level bindings for the chacha20-poly1305 secretstream constructions.

	Add low-level bindings for ed25519ph pre-hashed signing construction.

	Add low-level bindings for constant-time increment and addition
on fixed-precision big integers represented as little-endian
byte sequences.

	Add low-level bindings for the ISO/IEC 7816-4 compatible padding API.

	Add low-level bindings for libsodium’s crypto_kx… key exchange
construction.

	Set hypothesis deadline to None in tests/test_pwhash.py to avoid
incorrect test failures on slower processor architectures. GitHub
issue #370

1.2.1 - 2017-12-04

	Update hypothesis minimum allowed version.

	Infrastructure: add proper configuration for readthedocs builder
runtime environment.

1.2.0 - 2017-11-01

	Update libsodium to 1.0.15.

	Infrastructure: add jenkins support for automatic build of
manylinux1 binary wheels

	Added support for SealedBox construction.

	Added support for argon2i and argon2id password hashing constructs
and restructured high-level password hashing implementation to expose
the same interface for all hashers.

	Added support for 128 bit siphashx24 variant of siphash24.

	Added support for from_seed APIs for X25519 keypair generation.

	Dropped support for Python 3.3.

1.1.2 - 2017-03-31

	reorder link time library search path when using bundled
libsodium

1.1.1 - 2017-03-15

	Fixed a circular import bug in nacl.utils.

1.1.0 - 2017-03-14

	Dropped support for Python 2.6.

	Added shared_key() method on Box.

	You can now pass None to nonce when encrypting with Box or
SecretBox and it will automatically generate a random nonce.

	Added support for siphash24.

	Added support for blake2b.

	Added support for scrypt.

	Update libsodium to 1.0.11.

	Default to the bundled libsodium when compiling.

	All raised exceptions are defined mixing-in
nacl.exceptions.CryptoError

1.0.1 - 2016-01-24

	Fix an issue with absolute paths that prevented the creation of wheels.

1.0 - 2016-01-23

	PyNaCl has been ported to use the new APIs available in cffi 1.0+.
Due to this change we no longer support PyPy releases older than 2.6.

	Python 3.2 support has been dropped.

	Functions to convert between Ed25519 and Curve25519 keys have been added.

0.3.0 - 2015-03-04

	The low-level API (nacl.c.*) has been changed to match the
upstream NaCl C/C++ conventions (as well as those of other NaCl bindings).
The order of arguments and return values has changed significantly. To
avoid silent failures, nacl.c has been removed, and replaced with
nacl.bindings (with the new argument ordering). If you have code which
calls these functions (e.g. nacl.c.crypto_box_keypair()), you must review
the new docstrings and update your code/imports to match the new
conventions.

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 nacl	

 	
 	
 nacl.pwhash	

 	
 	
 nacl.pwhash.argon2i	

 	
 	
 nacl.pwhash.argon2id	

 	
 	
 nacl.pwhash.scrypt	

Index

 A
 | B
 | C
 | D
 | E
 | G
 | H
 | I
 | K
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	AssertionError (built-in class)

B

 	
 	BadSignatureError (built-in class)

 	Base16Encoder (class in nacl.encoding)

 	Base32Encoder (class in nacl.encoding)

 	Base64Encoder (class in nacl.encoding)

 	blake2b (class in nacl.hashlib)

 	blake2b() (in module nacl.hash)

 	
 	Box (class in nacl.public)

 	BYTES_MAX (in module nacl.pwhash.argon2i)

 	(in module nacl.pwhash.argon2id)

 	(in module nacl.pwhash.scrypt)

 	BYTES_MIN (in module nacl.pwhash.argon2i)

 	(in module nacl.pwhash.argon2id)

 	(in module nacl.pwhash.scrypt)

C

 	
 	ciphertext (nacl.utils.EncryptedMessage attribute)

 	
 	CryptoError (built-in class)

D

 	
 	decode() (nacl.public.Box class method)

 	decrypt() (nacl.public.Box method)

 	(nacl.public.SealedBox method)

 	(nacl.secret.SecretBox method)

E

 	
 	encrypt() (nacl.public.Box method)

 	(nacl.public.SealedBox method)

 	(nacl.secret.SecretBox method)

 	
 	EncryptedMessage (class in nacl.utils)

 	ensure() (in module nacl.utils)

G

 	
 	generate() (nacl.public.PrivateKey class method)

 	(nacl.signing.SigningKey class method)

H

 	
 	HexEncoder (class in nacl.encoding)

I

 	
 	InvalidkeyError (built-in class)

K

 	
 	kdf() (in module nacl.pwhash.argon2i)

 	(in module nacl.pwhash.argon2id)

 	(in module nacl.pwhash.scrypt)

M

 	
 	MAX_DIGEST_SIZE (nacl.hashlib.blake2b attribute)

 	MAX_KEY_SIZE (nacl.hashlib.blake2b attribute)

 	MEMLIMIT_INTERACTIVE (in module nacl.pwhash)

 	(in module nacl.pwhash.argon2i)

 	(in module nacl.pwhash.argon2id)

 	(in module nacl.pwhash.scrypt)

 	MEMLIMIT_MAX (in module nacl.pwhash)

 	(in module nacl.pwhash.argon2i)

 	(in module nacl.pwhash.argon2id)

 	(in module nacl.pwhash.scrypt)

 	MEMLIMIT_MIN (in module nacl.pwhash)

 	(in module nacl.pwhash.argon2i)

 	(in module nacl.pwhash.argon2id)

 	(in module nacl.pwhash.scrypt)

 	
 	MEMLIMIT_MODERATE (in module nacl.pwhash)

 	(in module nacl.pwhash.argon2i)

 	(in module nacl.pwhash.argon2id)

 	(in module nacl.pwhash.scrypt)

 	MEMLIMIT_SENSITIVE (in module nacl.pwhash)

 	(in module nacl.pwhash.argon2i)

 	(in module nacl.pwhash.argon2id)

 	(in module nacl.pwhash.scrypt)

 	message (nacl.signing.SignedMessage attribute)

N

 	
 	nacl.pwhash (module)

 	nacl.pwhash.argon2i (module)

 	
 	nacl.pwhash.argon2id (module)

 	nacl.pwhash.scrypt (module)

 	nonce (nacl.utils.EncryptedMessage attribute)

O

 	
 	OPSLIMIT_INTERACTIVE (in module nacl.pwhash)

 	(in module nacl.pwhash.argon2i)

 	(in module nacl.pwhash.argon2id)

 	(in module nacl.pwhash.scrypt)

 	OPSLIMIT_MAX (in module nacl.pwhash)

 	(in module nacl.pwhash.argon2i)

 	(in module nacl.pwhash.argon2id)

 	(in module nacl.pwhash.scrypt)

 	OPSLIMIT_MIN (in module nacl.pwhash)

 	(in module nacl.pwhash.argon2i)

 	(in module nacl.pwhash.argon2id)

 	(in module nacl.pwhash.scrypt)

 	
 	OPSLIMIT_MODERATE (in module nacl.pwhash)

 	(in module nacl.pwhash.argon2i)

 	(in module nacl.pwhash.argon2id)

 	(in module nacl.pwhash.scrypt)

 	OPSLIMIT_SENSITIVE (in module nacl.pwhash)

 	(in module nacl.pwhash.argon2i)

 	(in module nacl.pwhash.argon2id)

 	(in module nacl.pwhash.scrypt)

P

 	
 	PASSWD_MAX (in module nacl.pwhash)

 	(in module nacl.pwhash.argon2i)

 	(in module nacl.pwhash.argon2id)

 	(in module nacl.pwhash.scrypt)

 	PASSWD_MIN (in module nacl.pwhash)

 	(in module nacl.pwhash.argon2i)

 	(in module nacl.pwhash.argon2id)

 	(in module nacl.pwhash.scrypt)

 	
 	PERSON_SIZE (nacl.hashlib.blake2b attribute)

 	PrivateKey (class in nacl.public)

 	public_key (nacl.public.PrivateKey attribute)

 	PublicKey (class in nacl.public)

 	PWHASH_SIZE (in module nacl.pwhash)

 	(in module nacl.pwhash.argon2i)

 	(in module nacl.pwhash.argon2id)

 	(in module nacl.pwhash.scrypt)

R

 	
 	random() (in module nacl.utils)

 	
 	RawEncoder (class in nacl.encoding)

 	RuntimeError (built-in class)

S

 	
 	SALT_SIZE (nacl.hashlib.blake2b attribute)

 	SALTBYTES (in module nacl.pwhash.argon2i)

 	(in module nacl.pwhash.argon2id)

 	(in module nacl.pwhash.scrypt)

 	scrypt() (in module nacl.hashlib)

 	SealedBox (class in nacl.public)

 	SecretBox (class in nacl.secret)

 	sha256() (in module nacl.hash)

 	sha512() (in module nacl.hash)

 	shared_key() (nacl.public.Box method)

 	
 	sign() (nacl.signing.SigningKey method)

 	signature (nacl.signing.SignedMessage attribute)

 	SignedMessage (class in nacl.signing)

 	SigningKey (class in nacl.signing)

 	siphash24() (in module nacl.hash)

 	siphashx24() (in module nacl.hash)

 	str() (in module nacl.pwhash)

 	(in module nacl.pwhash.argon2i)

 	(in module nacl.pwhash.argon2id)

 	(in module nacl.pwhash.scrypt)

T

 	
 	TypeError (built-in class)

U

 	
 	URLSafeBase64Encoder (class in nacl.encoding)

V

 	
 	ValueError (built-in class)

 	verify() (in module nacl.pwhash)

 	(in module nacl.pwhash.argon2i)

 	(in module nacl.pwhash.argon2id)

 	(in module nacl.pwhash.scrypt)

 	(nacl.signing.VerifyKey method)

 	
 	verify_key (nacl.signing.SigningKey attribute)

 	VerifyKey (class in nacl.signing)

 _static/up-pressed.png

_static/up.png

_images/ed25519.png
\.
signature

B byess1201
/

Troyies

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 PyNaCl: Python binding to the libsodium library

 		
 Public Key Encryption

 		
 Examples

 		
 nacl.public.Box

 		
 nacl.public.SealedBox

 		
 Reference

 		
 Algorithm

 		
 Secret Key Encryption

 		
 Example

 		
 Requirements

 		
 Key

 		
 Nonce

 		
 Reference

 		
 Algorithm details

 		
 Digital Signatures

 		
 Example

 		
 Reference

 		
 Ed25519

 		
 Algorithm

 		
 Hashing

 		
 Integrity check examples

 		
 Additional hashing usages for blake2b

 		
 Message authentication

 		
 Message authentication example

 		
 Key derivation

 		
 Key derivation example

 		
 Password hashing

 		
 Hashers and parameters

 		
 Password storage and verification

 		
 Key derivation

 		
 Module level constants for operation and memory cost tweaking

 		
 Encoders

 		
 Built in Encoders

 		
 Defining your own Encoder

 		
 Exceptions

 		
 PyNaCl specific exceptions

 		
 PyNaCl exceptions mixing-in standard library ones

 		
 Utilities

 		
 nacl.hash

 		
 nacl.pwhash

 		
 Functions exposed at top level

 		
 Per-mechanism password hashing implementation modules

 		
 nacl.pwhash.argon2id

 		
 nacl.pwhash.argon2i

 		
 nacl.pwhash.scrypt

 		
 nacl.hashlib

 		
 Installation

 		
 Binary wheel install

 		
 Linux source build

 		
 Doing A Release

 		
 Reference vectors

 		
 Imported reference vectors

 		
 Box construction

 		
 SecretBox construction

 		
 chacha20poly1305

 		
 xchacha20poly1305

 		
 siphash24 and siphashx24

 		
 Custom generated reference vectors

 		
 Argon2 constructs reference vectors

 		
 Blake2b reference vectors

 		
 scrypt reference vectors

 		
 SealedBox reference vectors

 		
 secretstream reference vectors

 		
 Building the bundled library

 		
 Changelog

 		
 1.3.0 2018-09-26

 		
 1.2.1 - 2017-12-04

 		
 1.2.0 - 2017-11-01

 		
 1.1.2 - 2017-03-31

 		
 1.1.1 - 2017-03-15

 		
 1.1.0 - 2017-03-14

 		
 1.0.1 - 2016-01-24

 		
 1.0 - 2016-01-23

 		
 0.3.0 - 2015-03-04

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

_static/ed25519.png
\.
signature

B byess1201
/

Troyies

_static/plus.png

