Source code for nacl.secret

# Copyright 2013 Donald Stufft and individual contributors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import ClassVar, Optional

import nacl.bindings
from nacl import encoding
from nacl import exceptions as exc
from nacl.utils import EncryptedMessage, StringFixer, random


[docs]class SecretBox(encoding.Encodable, StringFixer): """ The SecretBox class encrypts and decrypts messages using the given secret key. The ciphertexts generated by :class:`~nacl.secret.Secretbox` include a 16 byte authenticator which is checked as part of the decryption. An invalid authenticator will cause the decrypt function to raise an exception. The authenticator is not a signature. Once you've decrypted the message you've demonstrated the ability to create arbitrary valid message, so messages you send are repudiable. For non-repudiable messages, sign them after encryption. Encryption is done using `XSalsa20-Poly1305`_, and there are no practical limits on the number or size of messages (up to 2⁶⁴ messages, each up to 2⁶⁴ bytes). .. _XSalsa20-Poly1305: https://doc.libsodium.org/secret-key_cryptography/secretbox#algorithm-details :param key: The secret key used to encrypt and decrypt messages :param encoder: The encoder class used to decode the given key :cvar KEY_SIZE: The size that the key is required to be. :cvar NONCE_SIZE: The size that the nonce is required to be. :cvar MACBYTES: The size of the authentication MAC tag in bytes. :cvar MESSAGEBYTES_MAX: The maximum size of a message which can be safely encrypted with a single key/nonce pair. """ KEY_SIZE: ClassVar[int] = nacl.bindings.crypto_secretbox_KEYBYTES NONCE_SIZE: ClassVar[int] = nacl.bindings.crypto_secretbox_NONCEBYTES MACBYTES: ClassVar[int] = nacl.bindings.crypto_secretbox_MACBYTES MESSAGEBYTES_MAX: ClassVar[int] = ( nacl.bindings.crypto_secretbox_MESSAGEBYTES_MAX ) def __init__( self, key: bytes, encoder: encoding.Encoder = encoding.RawEncoder ): key = encoder.decode(key) if not isinstance(key, bytes): raise exc.TypeError("SecretBox must be created from 32 bytes") if len(key) != self.KEY_SIZE: raise exc.ValueError( "The key must be exactly %s bytes long" % self.KEY_SIZE, ) self._key = key def __bytes__(self) -> bytes: return self._key
[docs] def encrypt( self, plaintext: bytes, nonce: Optional[bytes] = None, encoder: encoding.Encoder = encoding.RawEncoder, ) -> EncryptedMessage: """ Encrypts the plaintext message using the given `nonce` (or generates one randomly if omitted) and returns the ciphertext encoded with the encoder. .. warning:: It is **VITALLY** important that the nonce is a nonce, i.e. it is a number used only once for any given key. If you fail to do this, you compromise the privacy of the messages encrypted. Give your nonces a different prefix, or have one side use an odd counter and one an even counter. Just make sure they are different. :param plaintext: [:class:`bytes`] The plaintext message to encrypt :param nonce: [:class:`bytes`] The nonce to use in the encryption :param encoder: The encoder to use to encode the ciphertext :rtype: [:class:`nacl.utils.EncryptedMessage`] """ if nonce is None: nonce = random(self.NONCE_SIZE) if len(nonce) != self.NONCE_SIZE: raise exc.ValueError( "The nonce must be exactly %s bytes long" % self.NONCE_SIZE, ) ciphertext = nacl.bindings.crypto_secretbox( plaintext, nonce, self._key ) encoded_nonce = encoder.encode(nonce) encoded_ciphertext = encoder.encode(ciphertext) return EncryptedMessage._from_parts( encoded_nonce, encoded_ciphertext, encoder.encode(nonce + ciphertext), )
[docs] def decrypt( self, ciphertext: bytes, nonce: Optional[bytes] = None, encoder: encoding.Encoder = encoding.RawEncoder, ) -> bytes: """ Decrypts the ciphertext using the `nonce` (explicitly, when passed as a parameter or implicitly, when omitted, as part of the ciphertext) and returns the plaintext message. :param ciphertext: [:class:`bytes`] The encrypted message to decrypt :param nonce: [:class:`bytes`] The nonce used when encrypting the ciphertext :param encoder: The encoder used to decode the ciphertext. :rtype: [:class:`bytes`] """ # Decode our ciphertext ciphertext = encoder.decode(ciphertext) if nonce is None: # If we were given the nonce and ciphertext combined, split them. nonce = ciphertext[: self.NONCE_SIZE] ciphertext = ciphertext[self.NONCE_SIZE :] if len(nonce) != self.NONCE_SIZE: raise exc.ValueError( "The nonce must be exactly %s bytes long" % self.NONCE_SIZE, ) plaintext = nacl.bindings.crypto_secretbox_open( ciphertext, nonce, self._key ) return plaintext
class Aead(encoding.Encodable, StringFixer): """ The AEAD class encrypts and decrypts messages using the given secret key. Unlike :class:`~nacl.secret.SecretBox`, AEAD supports authenticating non-confidential data received alongside the message, such as a length or type tag. Like :class:`~nacl.secret.Secretbox`, this class provides authenticated encryption. An inauthentic message will cause the decrypt function to raise an exception. Likewise, the authenticator should not be mistaken for a (public-key) signature: recipients (with the ability to decrypt messages) are capable of creating arbitrary valid message; in particular, this means AEAD messages are repudiable. For non-repudiable messages, sign them after encryption. The cryptosystem used is `XChacha20-Poly1305`_ as specified for `standardization`_. There are `no practical limits`_ to how much can safely be encrypted under a given key (up to 2⁶⁴ messages each containing up to 2⁶⁴ bytes). .. _standardization: https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-xchacha .. _XChacha20-Poly1305: https://doc.libsodium.org/secret-key_cryptography/aead#xchacha-20-poly1305 .. _no practical limits: https://doc.libsodium.org/secret-key_cryptography/aead#limitations :param key: The secret key used to encrypt and decrypt messages :param encoder: The encoder class used to decode the given key :cvar KEY_SIZE: The size that the key is required to be. :cvar NONCE_SIZE: The size that the nonce is required to be. :cvar MACBYTES: The size of the authentication MAC tag in bytes. :cvar MESSAGEBYTES_MAX: The maximum size of a message which can be safely encrypted with a single key/nonce pair. """ KEY_SIZE = nacl.bindings.crypto_aead_xchacha20poly1305_ietf_KEYBYTES NONCE_SIZE = nacl.bindings.crypto_aead_xchacha20poly1305_ietf_NPUBBYTES MACBYTES = nacl.bindings.crypto_aead_xchacha20poly1305_ietf_ABYTES MESSAGEBYTES_MAX = ( nacl.bindings.crypto_aead_xchacha20poly1305_ietf_MESSAGEBYTES_MAX ) def __init__( self, key: bytes, encoder: encoding.Encoder = encoding.RawEncoder, ): key = encoder.decode(key) if not isinstance(key, bytes): raise exc.TypeError("AEAD must be created from 32 bytes") if len(key) != self.KEY_SIZE: raise exc.ValueError( "The key must be exactly %s bytes long" % self.KEY_SIZE, ) self._key = key def __bytes__(self) -> bytes: return self._key def encrypt( self, plaintext: bytes, aad: bytes = b"", nonce: Optional[bytes] = None, encoder: encoding.Encoder = encoding.RawEncoder, ) -> EncryptedMessage: """ Encrypts the plaintext message using the given `nonce` (or generates one randomly if omitted) and returns the ciphertext encoded with the encoder. .. warning:: It is vitally important for :param nonce: to be unique. By default, it is generated randomly; [:class:`Aead`] uses XChacha20 for extended (192b) nonce size, so the risk of reusing random nonces is negligible. It is *strongly recommended* to keep this behaviour, as nonce reuse will compromise the privacy of encrypted messages. Should implicit nonces be inadequate for your application, the second best option is using split counters; e.g. if sending messages encrypted under a shared key between 2 users, each user can use the number of messages it sent so far, prefixed or suffixed with a 1bit user id. Note that the counter must **never** be rolled back (due to overflow, on-disk state being rolled back to an earlier backup, ...) :param plaintext: [:class:`bytes`] The plaintext message to encrypt :param nonce: [:class:`bytes`] The nonce to use in the encryption :param encoder: The encoder to use to encode the ciphertext :rtype: [:class:`nacl.utils.EncryptedMessage`] """ if nonce is None: nonce = random(self.NONCE_SIZE) if len(nonce) != self.NONCE_SIZE: raise exc.ValueError( "The nonce must be exactly %s bytes long" % self.NONCE_SIZE, ) ciphertext = nacl.bindings.crypto_aead_xchacha20poly1305_ietf_encrypt( plaintext, aad, nonce, self._key ) encoded_nonce = encoder.encode(nonce) encoded_ciphertext = encoder.encode(ciphertext) return EncryptedMessage._from_parts( encoded_nonce, encoded_ciphertext, encoder.encode(nonce + ciphertext), ) def decrypt( self, ciphertext: bytes, aad: bytes = b"", nonce: Optional[bytes] = None, encoder: encoding.Encoder = encoding.RawEncoder, ) -> bytes: """ Decrypts the ciphertext using the `nonce` (explicitly, when passed as a parameter or implicitly, when omitted, as part of the ciphertext) and returns the plaintext message. :param ciphertext: [:class:`bytes`] The encrypted message to decrypt :param nonce: [:class:`bytes`] The nonce used when encrypting the ciphertext :param encoder: The encoder used to decode the ciphertext. :rtype: [:class:`bytes`] """ # Decode our ciphertext ciphertext = encoder.decode(ciphertext) if nonce is None: # If we were given the nonce and ciphertext combined, split them. nonce = ciphertext[: self.NONCE_SIZE] ciphertext = ciphertext[self.NONCE_SIZE :] if len(nonce) != self.NONCE_SIZE: raise exc.ValueError( "The nonce must be exactly %s bytes long" % self.NONCE_SIZE, ) plaintext = nacl.bindings.crypto_aead_xchacha20poly1305_ietf_decrypt( ciphertext, aad, nonce, self._key ) return plaintext